Архив метки: измерять

5.3. Косвенные методы, основанные на изменении физических свойств измеряемой среды

Для определения давления находят также применение методы, ос­нованные на зависимости от давления различных физических свойств жидкостей и газов и протекающих в них процессах. При этом были использованы результаты исследований влияния давления на плотность и вязкость, диэлектрическую проницаемость, скорость распространения ультразвука, теплопроводность и другие свойства измеряемой среды.

В области высоких и средних давлений указанные методы широкого распространения не получили в связи с их относительной сложностью и трудоемкостью по сравнению с другими методами (применение манга­нинового манометра сопротивления в области высоких давлений, пря­мые методы измерений в области средних давлений).

В области вакуумных измерений указанные методы применяются практически повсеместно. Зависимость теплопроводности разреженно­го газа от давления используется в тепловых" и термопарных маномет­рах; зависимость тока положительных ионов от измеряемого давле­ния — в ионизационных манометрах. Используется также зависимость от давления вязкости газа, кинетической энергии молекул, концентра­ции молекул и пр.

К контрольному вопросу № 9

Вы правильно ответили на вопрос. Метод косвенного из­мерения давления путем предварительного сжатия газа не зави­сит от манометра, которым измеряется давление сжатого газа.

Наибольшее распространение в вакуумной технике (около 70 %) получили термопарные и ионизационные манометры.

Термопарный манометр (рис. 54, а) так же, как и тепловой, основан на зависимости теплопроводности разреженного газа от давления. Мано­метр содержит стеклянную или металлическую колбу 3, в которой поме­щены нагреватель 1 и впаянная в него термопара 2. Нагреватель питается от источника переменного тока, и его температура, а следовательно, и температура термопары, определяется теплоотдачей в окружающий раз­реженный газ. Чем меньше давление газа, тем меньше его теплопровод­ность и тем больше температура, а следовательно, ЭДС на выходе термо­пары, которая и является мерой измеряемого давления. Шкала прибора 4 для измерения ЭДС градуируется, как правило, в единицах давления. Данный принцип наиболее эффективен при давлениях от 0,1 до 100 Па. При давлениях, меньших 0,1 Па, все большая доля тепла передается излу­чением, а при давлениях, больших 100 Па, увеличение теплопроводности газа резко замедляется. В обоих случаях существенно уменьшается чув­ствительность прибора. Погрешность измерений составляет 10—30 %. На градуировочную характеристику существенно влияет состав газа. Поэтому для уточнения показаний термопарного манометра необходима индивидуальная градуировка.

5.3. Косвенные методы, основанные на изменении физических свойств измеряемой среды

Принцип действия ио­низационного манометра основан на зависимости от давления тока положитель­ных ионов, образованных в результате ионизации раз­реженного газа. Ионизация газа осуществляется элект­ронами, ускоряемыми электрическим или магнит­ным полями, а также по­средством излучения ра­диоизотопов. При одном и том же количестве электро­нов, пролетающих через газ, или постоянной мощ­ности излучения степень ионизации газа пропорцио­нальна концентрации его молекул, т. е. измеряемо­му давлению.

Рис. 54. Термопарный манометр

В простейшем случае наиболее употребим иони­зационный манометр с го­рячим   катодом   (рис.  54,

б), содержащий стеклянную колбу 2, в которую впаяны анод 1 и катод 3. Благодаря разогреву катода источником постоянного тока 4, его по­верхность испускает электроны, которые разгоняются напряжением £/а
между катодом и анодом -и ионизируют находящийся между ними газ. Сила тока положительных ионов, измеряемая гальванометром 5, является мерой измеряемого давления

5.3. Косвенные методы, основанные на изменении физических свойств измеряемой средыгде к — постоянная, зависящая от конструкции прибора и состава газа. Для увеличения степени ионизации между катодом и анодом поме­щена сетка, на которую подается напряжение, сообщающее дополнитель­ное ускорение потоку электронов. Манометры этого типа охватывают диапазон от 10~7
до 1 Па, дополняя диапазон измерений термопарного манометра. Погрешности измерений составляют также 10—30 %.

Контрольный вопрос № 10

Зависят ли показания термопарного вакуумметра от физи­ческих свойств газов, давление которых необходимо измерить? Если „да" — см. с. 125, если „нет" — см. с. 127.

4.5. Манометры с силовой компенсацией

Все рассмотренные выше деформационные манометры основаны на методе прямого преобразования давления (см. рис. 32, а). Метод урав­новешивающего преобразования давления (см. рис. 32, б), хотя и менее распространен в технике измерения давления, но продолжает сохранять заметную роль в некоторых отраслях промышленности, в которой на­ходят применение манометры с силовым уравновешиванием двух типов: уравновешивание измеряемого давления пневматическим давлением (пневматическая силовая компенсация); уравновешивание измеряемого давления электромагнитными силами (электромагнитная силовая ком­пенсация) .

При этом во время уравновешивания силы, возникающей в первич­ном ЧЭ под действием измеряемого давления, силой, развиваемой цепью обратной связи, происходит незначительное перемещение первичного ЧЭ, независимо от. его жесткости, что позволяет в широких пределах варьи­ровать чувствительность измеряемой системы.

К контрольному вопросу № 7

Вы плохо усвоили принцип действия полупроводниковых преобразователей давления. Еще раз внимательно просмотрите разд. 4.4.

Манометры с пневматической силовой компенсацией. Принципиаль­ная схема манометра (преобразователя давления) с пневматической си­ловой компенсацией представлена на рис. 47. Измерительная система преобразователя состоит из сильфона 1, жестко связанного с рычагом 2, второй конец которого выполнен в форме плоской заслонки. Система обратной связи содержит сопло 3, которое перекрывается заслонкой при повороте рычага 2, дросселя 6 и сильфона 7, жестко связанного с рыча­гом, вдоль которого может передвигаться установочный ролик 8.

При воздействии измеряемого давления рк жидкости или газа на сильфон 1 возникает сила, стремящаяся повернуть рычаг 2 и тем самым прижать заслонку к соплу 3, которое с помощью дросселя 4 сообщено с источником давления питания. Благодаря этому давление в системе об­ратной связи повышается и после усилителя поступает в сильфон 7, свя­занный с рычагом и пружиной 5, развивая посредством установочного ролика 8 уравновешивающее усилие на рычаг 2. Давление, которое необ­ходимо для достижения равновесия измерительной системы, пропорцио­нально измеряемому давлению, причем коэффициент пропорциональнос­ти определяется эффективными площадями сильфонов 1 и 7 и соотноше­нием плеч рычагов. Этим достигается соответствие диапазона измеряемо­го давления ри диапазону выходного давления воздуха рВых» который

Рпит

4.5. Манометры с силовой компенсациейРёых

Рис. 47. Схема преобразователя давления с пневмати­ческой силовой компенсацией

составляет. 20—100 кПа (стандартный выходной пневматический сиг­нал).

В нашей стране выпускается преобразователь разности давлений типа 13ДД11 (рис. 48). Измерительная система преобразователя содер­жит основание 1, к которому фланцами герметично, прикреплены раз­делительные мембраны 9. Центры мембран жестко соединены стерж­нем 10, в прорезь которого помещен нижний конец рычага 2 с пружиной 4, закрепленного на упругой опоре 3. Внутренняя полость основания 1 между мембранами 9 заполнена кремнийорганической жидкостью.

При подаче на разделительные мембраны измеряемой разности дав­лений на нижний конец рычага со стороны стержня действует сила, стре­мящаяся повернуть рычаг, верхний конец которого с помощью заслонки 5 увеличивает сопротивление при истечении сжатого воздуха из сопла 6, питаемого давлением РпиТ =140 кПа через постоянный дроссель. Бла­годаря этому давлению воздуха в цепи обратной связи, усиленное пнев-мореле 7, увеличивается до тех пор, пока усилие со стороны сильфона 8 не уравновесит усилие со стороны измеряемого давления. При достиже­нии равновесия измерительной системы измеряемая разность давлений определяется выходным давлением £>вых-

Преобразователи предназначены для эксплуатации при температуре окружающего воздуха от —50 до +80°С. Пределы допускаемой основной погрешности 0,6 и 1,0 %, верхние пределы измерений разности давлений в зависимости от модификации колеблются от 1 до 630 кПа при рабочем избыточном давлении от 2,5 до 40 МПа. Масса прибора от 5,2 до 14 кг, габаритные размеры от 197Х155Х100 до ЗООХ188Х140 мм. Достоинство преобразователя — его практически полная взрывобезопасность.

Рпит

4.5. Манометры с силовой компенсацией

Аналогичные по своим ха­рактеристикам   преобразовате­ли  с пневматической силовой компенсацией   для  измерения абсолютного    и    избыточного .^       давления и разности давлений РВых  выпускаются   и   зарубежными фирмами „Siemens", „Guide — Regelarmafurer"   (ФРГ)   и др.

К контрольному вопросу №7

Материал разд. 4.4 Вами усвоен. Продол­жайте дальнейшее изуче­ние учебника.

Рис. 48. Преобразователь разности давлений типа 13ДД-11

Манометрические приборы с силовым электромагнитным уравновешиванием отличаются от всех других типов, рассмот­ренных ранее, тем, что в них путем использования обратной связи происходит сравнение электрической выходной вели­чины с входной механической. Следовательно, достигается со­стояние равновесия меэвду входной силой, возникающей в результате воздействия давле­ния на УЧЭ, и противоположно направленной силой, создавае­мой электрическим током, зна­чение которого является мерой

давления. Обладая очевидными достоинствами (долговременная стабиль­ность, практическая независимость статических и динамических характе­ристик от других характеристик УЧЭ), преобразователи с силовым урав­новешиванием имеют обычно относительно большие размеры и массу. Этим, в основном, объясняется их замена датчиками других типов во многих отраслях промышленности. Однако в тех областях науки и тех­ники, где требуется высокая точность измерений, эффективность приме­нения манометрических приборов с электромагнитной силовой компен­сацией не вызывает сомнений.

В нашей стране серийно выпускаются измерительные преобразовате­ли давления типа ИОД, предназначенные для прецизионных измерений в системах автоматического контроля, регулирования и управления тех­нологическими процессами. Преобразователь (рис. 49) состоит из чувст­вительного элемента (сильфона) 5, рычага 3 с опорой 4, двух механиз-

4.5. Манометры с силовой компенсацией

4.5. Манометры с силовой компенсацией

Рис. 49. Преобразователь давлении типа ИПД

мов обратной связи 7 и 7, индикатора рассогласования 6 дифференциаль­но-трансформаторного типа, нагрузочного устройства 2 и блока усилите­ля &

Преобразователь работает следующим образом. В чувствительный элемент 5 подается измеряемое давление, который преобразует это дав­ление в усилие, передаваемое на рычаг 3, что приводит к перемещению рычага и связанного с ним плуншера индикатора рассогласования 6. Ин­дикатор преобразует перемещение в управляющий сигнал переменного тока поступаюидай на вход блока усилителя 8, который преобразуется в выходной сигнал постоянного тока. Последний поступает одновремен­но в обмотки катушек силовых механизмов обратной связи 1 и 7 и на блок резисторов 11, преобразующих выходной сигнал усилителя в вы­ходной сигнал преобразователя в виде напряжения постоянного тока. В силовом механизме взаимодействие поля постоянного магнита с маг­нитным полем, которое создается током усилителя 8> протекающим по обмотке подвижной катушки, создает пропорциональное этому току усилие Обмотки катушек силовых механизмов 1 и 7 включены в проти­воположном направлении, поэтому моменты развиваемых ими сил скла­дываются и уравновешивают момент силы, создаваемый чувствительным элементом на плече L.

Прео разователь позволяет производить его самопроверку в процес­се эксплуатации. При этом нижний предел измерений корректируется при нулевом значении давления путем сообщения чувствительного эле­мента с атмосферой, а верхний предел измерений — наложением на рычаг 3 калибровочного шарика нагрузочного устройства 2.

Питание преобразователя производится от сети переменного тока на­пряжением 220 В понижающим трансформатором 9 и источником стаби­лизированного питания 10.

Модификации преобразователей позволяют измерять как избыточ­ное давление (рис. 52, а), так и разность давлений (рис. 52, б). В послед­нем случае измерительный механизм преобразователя помещается в гер­метичный корпус 13, в присоединительный штуцер которого подается меньшее из измерительных давлений.

Преобразователь в комплекте с блоком индикации 12 применяется в качестве образцового показывающего манометра с цифровым отсче­том.

Расчетное цифровое показание* блока индикации, соответствующее измеряемому давлению, определяется по формуле

•  II = U       •       Р~Pmin                                     (4 IT)

Ртах ~ Pmin

где С/щах — цифровое показание блока индикации, соответствующее верх­нему пределу измерений измеряемого давления; р — значение измеряе­мого давления; ртах
— верхний предел измерений; рт^ — нижний пре­дел измерений (для всех модификаций, кроме модификации с диапазо­ном измерений 20—100 кПарт^ = 0). Основные метрологические харак­теристики манометров ИПДЦ:

верхние пределы измерений от —10 до —100 кПа для вакуумметров; от 6 кПа до 16 МПа для манометров;

предел допускаемой основной погрешности от ±0,06 до ±0,25 % (в зависимости от диапазона измерений);

зона нечувствительности не превышает 0,01 %\

изменение показаний от влияния температуры не более 0,01 % на

icq

габаритные размеры преобразователя 100X468X220 мм, цифрового вольтметра Щ304 61X219X310, масса 16 кг.

Ограниченный объем книги не позволяет рассмотреть многие другие типы деформационных манометров, сведения о которых имеются в тех­нической литературе по технике измерения давления.

Контрольный вопрос № 8

Имеет ли место нелинейность статической характеристики в деформационных манометрах с силовой компенсацией? Да или нет?

Если „да" — см. с. 114, если „нет" — см. с. 115.

* Отсчет показаний производится по табло цифрового вольтметра.

7.11. Приборы для измерения расхода в единицах массы (массовые расходомеры)

В системах автоматического регулирования теплоэнергетических установок, в ракетной и авиационной технике, в различных химических процессах массовый расход {М) является основным физическим парамет­ром, определяющим оптимальные режимы работы объектов и качество процессов. В связи с этим в последнее время у нас в стране и за рубежом интенсивно разрабатываются и внедряются различные приборы для изме­рения массового расхода. Развитие этой области расходометрии идет по трем направлениям. Во-первых, объемные расходомеры (переменного пе­репада давления, электромагнитные, турбинные и пр.) снабжаются соот­ветствующими датчиками плотности и корректирующими схемами; во-вторых, создаются приборы, способные непосредственно измерять прямы­ми методами массовый расход благодаря особенностям своего принципи­ального устройства: в-третьих, находят применение комбинированные расходомеры, измеряющие массовый расход косвенными методами пу­тем автоматической обработки результатов прямых измерений связан­ных с ним параметров.

Контрольный вопрос № 14

На показания какого типа расходомеров — ультразвуковых или ЯМР-расходомеров- изменения вязкости измеряемой среды оказывают большее влияние?

Если Вы решите, что на показания ультразвуковых расходо­меров — см. с. 182,   если на показания ЯМР-расходомеров — см. с. 1S6. К контрольному вопросу №13

Вы неправильно ответили на вопрос.

Разберитесь, что происходит с потоком измеряемой среды при ее течении через турбинный датчик, и как „закрутка" пото­ка влияет на показания турбинных расходомеров.

Несмотря на многообразие предложенных принципиальных схем и конструктивных решений, массовые расходомеры прямого действия можно отнести к двум основным видам: инерционным и тепловым. Принцип действия инерционных расходомеров основан на том, что потоку измеряемого вещества сообщается дополнительное движение, чтобы создать в потоке инерционные эффекты, по которым судят о зна­чении массового расхода. В зависимости от того, какое именно дополни­тельное движение сообщается потоку (при помощи вращающегося или колеблющегося звена), на чувствительном элементе прибора возникает или усилие Кориолиса, или гироскопический, или инерционный момент. Принцип действия тепловых расходомеров основан на непрерывном нагреве потока (калориметрические расходомеры) или специального элемента, помещенного в поток (термоанемометры). В первом случае массовый расход определяется количеством тепла, обеспечивающим определенную разность температур потока до и после нагревателя; во втором — количеством тепла, теряемым нагретым или непрерывно на­греваемым телом, помещенным в поток измеряемого вещества.

Массовые турборасходомеры; В турбораеходомерах, реализующих инерционный принцип измерений, закручивай? поток относительно век­тора его актуальной (продольной) скорости.

Момент, необходимый для обеспечения устойчивого вращения по­тока с угловой скоростью <о, определяется (без учета сил гидравличес­кого трения) соотношением

MBp = J-/<o,                            (7.36)

где/ — момент инерции среды.

Учитывая, что dJ = R^drn (RK — радиус инерции; т — масса вра­
щающейся среды) и dm/dt =M (M — массовый расход среды), из выра­
жения (7.36) получим общее для всех турборасходомеров уравнение
для определениям     мвр

7.11. Приборы для измерения расхода в единицах массы (массовые расходомеры)При торможении предварительно закрученного потока на тормозя­щее устройство будет действовать момент, соответствующий выражению (7.29), и уравнение приборов, использующих эффект торможения закру­ченного потока, не будет отличаться от выражения (7.37).

Существует большое число различных модификаций турбинных дат­чиков массового расхода, отличающихся способами вращения потока, измеренияМвр и значениямиRH.

Принципиальные схемы датчиков, получивших преимущественное распространение, приведены на рис. 77.

Основным источником методических погрешностей турборасходоме­ров является непостоянство сил трения в их гидравлическом тракте, об­условленное изменениями вязкости, температуры и других параметров измеряемой среды.

Погрешность измерения массового расхода турборасходомерами мо­жет быть доведена до ± (0,5—1,0) % верхнего предела измерений. Повы­шение точности лимитируется трудностями поддержания постоянного числа оборотов ведущей (закручивающей поток) турбинки, нестабиль­ностью характеристик упругих элементов, воспринимающих действие инерционного звена, и изменением КПД приводного двигатедя при изме­нении нагрузки (расхода). Кроме того, на показания турборасходоме­ров (как уже отмечалось выше) влияет изменение параметров измеря­емой среды, а их надежность ограничивается наличием изнашивающихся опор.

Кориолисовые и гироскопические расходомеры. В этих расходоме­рах закручивание и торможение потока производится в помощью враща­ющихся элементов трубопровода сложной конфигурации.

Кориолисовый расходомер (рис. 78) состоит из двух Т-образных участков 2 и б трубопровода, сочлененных при помощи гибких соедине­ний 1 и приводимых во вращение с постоянной угловой скоростью w специальным приводным механизмом. Прибор размещен в корпусе 5 (показан условно). При протекании вещества со скоростью v через вра­щающийся в уплотнительных муфтах 4 элемент трубопровода в потоке возникает направленное против вращения ускорение Кориолиг-а, равное

-Р’кт

7.11. Приборы для измерения расхода в единицах массы (массовые расходомеры)
7.11. Приборы для измерения расхода в единицах массы (массовые расходомеры)
7.11. Приборы для измерения расхода в единицах массы (массовые расходомеры)

 

7.11. Приборы для измерения расхода в единицах массы (массовые расходомеры)

 

7.11. Приборы для измерения расхода в единицах массы (массовые расходомеры)

Рис. 77. Принципиальные схемы наиболее распро­страненных датчиков:

а — измеряется мощность, необходимая для за­кручивания потока; б — измеряется момент вра­щения по углу поворота упругой муфты; в — из­меряется момент вращения заторможенной крыль­чатки по углу ее поворота при упругом зацепле­нии; г — измеряется разность углов поворота двух крыльчаток, упруго закрепленных на валу двигателя; д — измеряется относительный угол поворота двух крыльчаток с разными углами по­ворота лопастей; 1 — двигатель; 2 — датчик мощ­ности; 3 — прямолопастная крыльчатка; 4 — уп­ругое соединение валов; 5 — импульсный датчик; 6 — датчик угла поворота; 7 — радиальная крыль­чатка; 8 — спиральная крыльчатка

а — 7ш. Вследствие этого в каждой ветви Т-образного участка создается усилие RK = —m2cjv = —2Mcj(R2
-Ri)
и на всем вращающемся участке возникает момент

 = 2R

R-,

 (Rl-R i

(7.38)

В результате действия этого момента Г-образные участки, деформи­руя гибкое соединение /, поворачиваются относительно друг друга на не­который угол а. Угол поворота а преобразуется в электрический сигнал при помощи торсионного датчика 3. Значение этого сигнала пропорцио­нально МК, а следовательно, при постоянной угловой скорости вращения и массовому расходу вещества.

Гироскопический расходомер (рис. 79) состоит из эксцентрично рас­положенных элементов трубопровода сложной конфигурации. Устрой-

7.11. Приборы для измерения расхода в единицах массы (массовые расходомеры)

7.11. Приборы для измерения расхода в единицах массы (массовые расходомеры)

 

Рис. 78. Схема кориолисова расходо­мера

Рис. 79. Схема гироскопического рас­ходомера

ство приводится во вращение относительно оси АА с постоянной угловой скоростью. Возникающий при этом гироскопический момент Мт стре­мится повернуть ротор относительно оси ВВ. Величина

Мт
= 2Мы (R2 R1) Ъ               (7.39)

пропорциональна массовому расходу вещества и преобразуется в соот­ветствующий сигнал с помощью датчиков деформации (например, тензо-метрических).

Относительно невысокая точность кориолисовых и гироскопических расходомеров, характеризуемая-приведенной погрешностью 1—2 %, объ­ясняется большими температурными влияниями на жесткость упругих элементов, их гистерезисом и последействием, а также трудностями под­держания постоянным числа оборотов приводного механизма, особенно при колебаниях расхода. Расходомеры данного типа громоздки, сложны в эксплуатации, требуют специальных вращающихся уплотнительных устройств и большой мощности приводного механизма.

Два последних недостатка отсутствуют у вибрационных расходоме­ров, у которых вращательное движение трубопровода заменяется коле­бательным. Однако точность вибрационных расходомеров получается меньшей.

Преимуществом кориолисовых и гироскопических расходомеров является полная независимость их показаний от вязкости измеряемой среды. Поэтому их целесообразно применять лишь для измерения массо­вого расхода веществ с большим диапазоном изменения вязкости.

Калориметрические и термоанемометрические расходомеры. Бели пренебречь теплом, отдаваемым потоком через стенки трубопровода в окружающую среду, то уравнение теплового баланса Между расходом тепла, потребляемым нагревателем, и теплом, сообщенным потоку, при­нимает вид

qt = k0M.CpAT,          …..           (7.40)

где Аго — поправочный множитель на неравномерность распределения температур по сечению трубопровода; ср — теплоемкость (для газа при постоянном давлении) при температуре 7\ + Т2/2; Т\, Т2 — температу­ры потока до и после нагревателя; AT — Т2 ~ 7\,

Тепло к потоку в калориметрических расходомерах подводится обычно электронагревателями, для которых

«, = 0,24/**.                           (7*0

где / — сила тока; R — сопротивление нагревателя.

На основании выражений (7.40) и (7.41) получим уравнение измере­ний (статическую характеристику преобразования) калориметрических расходомеров

 °24IR                                                            (7.42)

коср
AT

Возможны и существуют два способа измерения массового расхода в соответствии с выражением (7.42) :

расход определяют по значению мощности, потребляемой нагревате­лем и обеспечивающей постоянную разность температур AT;

расход определяют по разности температур AT при неизменной мощ­ности, подводимой к нагревателю.

В первом случае расходомеры работают как регуляторы температу­ры нагрева потока, у которых измерительным и регулирующим элемен­том является уравновешенный мост с термометрами сопротивления до и после нагревателя. При изменении разности температур мост выходит из равновесия и включает устройство, которое изменяет регулировочное сопротивление до тех пор, пока не восстановится заданная степень нагре­ва. Массовый расход при этом определяют по показаниям ваттметра, включенного в цепь нагревателя.

Датчики калориметрических расходомеров второго типа (рис. 80) состоят из двух последовательно соединенных термометров сопротив­ления 1 и 3, устанавливаемых до и после нагревателя 2. Последователь­ное соединение термометров обеспечивает равенство токов в их цепях, что позволяет градуировать их непосредственно по разности температур. Кроме термометров сопротивления используют также термисторы и термопары. Термометры сопротивления обладают тем преимуществом, что их можно выполнять в виде равномерной сетки,.перекрывающей все сечения потока, и таким образом измерять среднюю по сечению темпера­туру.

7.11. Приборы для измерения расхода в единицах массы (массовые расходомеры)

Калориметрические расходомеры обладают достаточно высокой точ­ностью, оцениваемой (в условиях ин­дивидуальной градуировки) приведен­ной погрешностью ± (0,5—1,0) %, боль­шим диапазоном измерений (10:1 и выше), малой инерционностью.

Недостатками их являются слож­ность   измерительных  схем  и неста-

Рис. 80. Схема калориметрическо-     бильность характеристик, связанная с
го расходомера   коррозией приемных устройств и осаж-

дением на них различных частиц, пере­носимых потоком.

Дачные, приборы можно приме­нять для измерения массового расхода как жидкостей, так и газов. Но в настоящее время ими измеряют, главным образом, малые (в трубках диаметром 2-3 мм) и средние расходы чистых газов.

Статическая характеристика преобразования (уравнение измере­ний) термоанемометров определяется известным уравнением теплофи­зики

qT = 0,24/2/? = (Гн — Тс) (X + V 2«v*   y/’vj^ ),   (7.43)

где Ти — температура тела; Тс — температура потока измеряемой среды; X — теплопроводность среды; с„ — теплоемкость среды при постоянном объеме; d — диаметр нагреваемого тела.

Термоанемометры измеряют „массовую" скорость vp потока в месте установки нагреваемого тела.

В последние годы появились бесконтактные термоанемометрические расходомеры, в которых роль термоэлемента играет изолированный участок трубопровода.

Как видно из уравнения (7.43), „массовую" скорость при помощи термоанемометра можно измерять двумя способами. В одном случае ток, нагревающий приемник, поддерживают постоянным, и скорость оп­ределяют по результатам измерения его температуры. В другом случае ток нагрева регулируют таким образом, чтобы температура приемника оставалась постоянной, а скорость определяют по значению питающего тока. В практике встречаются оба этих способа измерений.

Приемник термоанемометра (термонить) обычно выполняют из пла­тиновой проволоки диаметром 0,005—0,3 мм. Температура термонити должна быть по возможности высокой, так как при ее увеличении по­вышается чувствительность приемника и уменьшается влияние колеба­ний температуры потока. Однако значительное повышение температуры проволоки может вызвать изменение структуры металла и тем самым „снос" градуировочных кривых прибора.

Основным недостатком термоанемометров является существенное влияние на их показания температуры, давления и различных теплофизи-ческих параметров измеряемой среды.

В связи с очень малыми габаритными размерами приемника (термо­нити) приборы получили преимущественное распространение в лабора-торно-зкспериментальной практике при измерении скоростей в тончай­ших пристенных слоях и пленках жидких и газообразных потоков. До появления оптических (лазерных) методов термоанемометры были единственными приборами, позволяющими проводить такие измерения.

Погрешности термоанемометров до’ настоящего времени полностью не изучены, и точность выполняемых с их помощью измерений не норми­руется.

Комбинированные турбопоршневые расходомеры. Одним из приме­ров, иллюстрирующим возможность комбинированного измерения мас­сового расхода, являются турбопоршневые расходомеры, состоящие иэ турбинного с аксиальной крыльчаткой и поршневого преобразователей. Угловая скорость вращения турбинки пропорциональна объемному рас­ходу среды, протекающей по трубопроводу,

<о = кг Q.                           (7.44)

Поршневой преобразователь воспринимает и передает на регистриру­ющий или показывающий прибор гидродинамическое давление потока, действующее наступицу турбинки и равное

 (7.45)

где ки k2 — коэффициенты пропорциональности, в общем случае завися­щие от числа Рейнольдса и конструктивных параметров преобразовате­лей.

Поделив выражение (7.45) на выражение (7.46). т. е. поделив пока­зания поршневого преобразователя на показания турбинного, получим рабочие уравнения измерений турбопоршневых расходомеров. Так, при измерении массового расхода

-,                               (7.46)

О

при измерении плотности протекающей среды

P=Ap^j,                                 (7.47)

р

Используя формулы (7.46) и (7.47), по результатам измерений угловой скорости и гидродинамического давления при известных (опре­деленных в процессе градуировки приборов) коэффициентах Ам и Ар можно рассчитать значения массового расхода и плотности протекающей среды.

Турбопоршневой расходомер (рис. 81) работает следующим обра­зом. Турбинка 11 жестко закреплена на поршне 8, который может пере­мещаться вдоль оси и вращаться относительно неподвижного цилиндра 9, закрепленного в опоре 10. Все детали прибора помещены в корпусе 2.

J
//

7.11. Приборы для измерения расхода в единицах массы (массовые расходомеры)В цилиндре 9 создается давление, пропорциональное статическому давлению в потоке и гидродина­мическому напору, действующе­му на турбинку 11 и поршень 8 в аксиальном направлении. Это давление по трубке 7, заполнен­ной специальной манометричес­кой жидкостью, передается в од­ну из полостей дифференциаль­ного манометра 5. Во вторую полость дифманометра по труб­ке 4 подается статическое давле­ние,  отбираемое  из кольцевой

Рис. 81. Схема турбопоршневого расходе- камеры 3. Следовательно, диф-
мера                  манометр 5 будет измерять толь-

ко динамическую составляющую давления потока, действующую на поверхность турбинки и выра­жаемую формулой (7.45). Поршневая пара 8-9 имеет микронные зазо­ры, что обеспечивает чисто жидкостное трение в поршневом датчике и весьма малые утечки манометрической жидкости, заполняющей систему дифманометра. Для пополнения утечек в систему введен пресс 6. Угло­вая скорость вращения турбинки измеряется счетным устройством 1. Основными достоинствами турбопоршневых расходомеров явля­ются:

возможность одновременного и комплексного измерения объемно­го, массового расхода и плотности протекающей по трубопроводу среды;

высокая точность измерений, обусловленная объединением в этих приборах двух прецизионных измерительных преобразователей — тур­бинного и поршневого и характеризуемая погрешностями измерений объемного расхода 0,1—0,2 %, массового расхода и плотности 0,3—0,5 %;

отсутствие опор с сухим трением, а следовательно, высокая стабиль­ность и надежность турбопоршневых приборов.

Специфическим недостатком данных расходомеров являются утечки манометрической жидкости в измеряемую среду. Однако эти утечки мо­гут быть сведены к ничтожно малым известными и применяемыми в сис­темах с неуплотненным поршнем конструктивными мероприятиями. При измерении же расхода нефтепродуктов и других жидкостей, кото­рые могут быть использованы в поршневых системах при соответствую­щем подборе материалов поршневых пар в качестве манометрических, этот недостаток вообще не сказывается.

В связи с достаточно высокой точностью и надежностью турбопорш-невые расходомеры используют в настоящее время’ в качестве образцо­вых расходоизмерительных устройств.

Естественно, возможны и другие комбинированные системы для из­мерения массового расхода, например, одновременное использование

сужающего устройства и турбинного датчика и пр. Однако точностные возможности этих систем получаются существенно меньшими.

3.1. Принцип действия, основы теории и типы поршневых манометров

3.1. Принцип действия, основы теории и типы поршневых манометров

На рис. 15 изображен простейший поршневой манометр, который состоит из цилиндрического поршня 1, притертого к цилиндру 2 с ми­нимально возможным зазором. Если на ниж­ний торец поршня действует измеряемое дав- ление р, то для его уравновешивания к порш­ню должна быть приложена сила Р. Уравнение равновесия с учетом силы трения на боковую поверхность поршня, возникшей при протека­нии жидкости или газа через зазор между поршнем и цилиндром под действием изме­ряемого давления, имеет вид

 = P-T,                 (3.1)

где F — геометрическая площадь поперечного сечения поршня; Т — сила жидкостного трения на боковую поверхность поршня.

После   преобразований   уравнение   (3.1) приводится к виду

Р-—V»                   (3-2)

где F + Т/р = F3(j, — эффективная (приведен­ная) площадь поршня.

Рис. 15. Простейший порш­невой манометр

Теоретические и экспериментальные иссле­дования показывают, что сила жидкостного трения Т пропорциональна действующему дав­лению. Поэтому эффективная площадь не зависит от давления, а следова­тельно, измеряемое давление прямо пропорционально уравновешиваю­щей его силе. Здесь не принимаются во внимание деформации поршня и цилиндра, которые необходимо учитывать при измерении высоких дав­лений.

Наиболее часто измеряемое давление уравновешивают весом грузов, что явно предпочтительно с точки зрения достижения высокой точности измерений, хотя и представляет известные неудобства в эксплуатации. Уравнение измерений (3.2) поршневого манометра в этом случае прини­мает вид

(3.3)

где т — масса грузов и поршня: g — ускорение свободного падения.

Благодаря высокой стабильности эффективной площади, которая определяется в основном геометрическими размерами папы поршень-цилиндр, а также возможности учета"" внешних влияний расчетными методами, поршневые манометры являются идеальными преобразова­телями давления в силу.

Наиболее существенное достоинство поршневых манометров со­стоит в том. что они непосредстьнно воспроизводят давление по опре­делению: давление равно силе, деленной на площадь поршня. Этот ме­тод так же, как и метод уравновешивания давления столбом «жидкости, является фундаментальным, т. е. измерение давления в конечном итоге сводится к измерению массы, длины и времени. Вышеизложенное по­зволяет сформулировать следующее определение.

Поршневой манометр — манометр, в котором действующее на пор­шень измеряемое давление преобразуется в силу и определяется но зна­чению силы, необходимой для ее уравновешивания. В наиболее распрос­траненных поршневых манометрах давление уравновешивается весом грузов. Такие манометры называются грузопоршневыми.

Уравнения (3.2) и (3.3) по своей структуре идентичны уравнениям измерений жидкостно-поршневых манометров (2.24) и (2.25). Действи­тельно, в обоих, случаях давление определяется по уравновешивающей его силе и площади твердой поверхности. Однако, между ними имеются существенные различия. Одно из обязательных условий, обеснечивай-щих возможность выполнения измерения — сохранение постоянства из­меряемого давления при его измерении. В жидкостно-поршневых мано­метрах зто достигается уравновешиванием измеряемого давления гидро­статическим давлением столба жидкости. Например, в колокольном манометре столб образуется в кольцевом пространстве между боковыми поверхностями колокола и сосуда, в которой залита разделительная жидкость (гидростатический затвор). В отличие от этого в поршневых манометрах постоянство давления в измерительной камере поддержива­ется благодаря гидравлическому сопротивлению протекания жидкости через зазор между поршнем и цилиндром (гидродинамический затвор). При этом ввиду малости зазора (1—2 мкм) гидравлическое сопротивле­ние позволяет поддерживать постоянство давления с допускаемыми от­клонениями. Не обеспечивая полную герметичность, гидродинамический затвор обладает очень важным преимуществом — измеряемое давление практически не влияет на размеры прибора, в то время как во всех жид­костных манометрах высота столба жидкости, необходимая для уравно­вешивания, прямо пропорциональна измеряемому давлению.

Для обеспечения чисто жидкостного трения в зазоре поршневой па­ры поршень вращают вокруг его оси относительно цилиндра или, наобо­рот, цилиндр вращают относительно поршня. Благодаря этому возника­ет эффект „гидравлического клина", на котором основана работа любо­го подшипника скольжения. При этом ось поршня центрируется относи­тельно оси цилиндра, что предотвращает непосредственный контакт меж­ду поверхностями поршня и цилиндра, а следовательно, и возможность

возникновения „сухого   нежидкостного трения и связанные с ним до­полнительные погрешности.

Рассмотрим более подробно основные теоретические закономернос­ти, связывающие метрологические и эксплуатационные характеристики поршневых манометров с геометрическими параметрами поршневых пар и физическими свойствами измерительной системы (рис. 16).

3.1. Принцип действия, основы теории и типы поршневых манометровСогласно теории сила жидкостного трения, действующая на боковую поверхность поршня вдоль его оси Т = жИр(1 + h/r), или, принимая во внимание, что h/r <$C 1 и вторым членом в скобках можно пренебречь,

T=7rrh -р.               (3.4)

Тогда, подставляя значение Т в выражение

Vvv        £-* Svvs         для эФФективнои площади поршня (2.32), по-vvvJ       n   KSSSi        лучим

 (3.5)

где г — радиус поршня; h = R — г — радиаль­ный зазор между поршнем и цилиндром; R —радиус цилиндра.

Эффективная площадь поршня F^ явля­ется основным параметром поршневого мано­метра.

Как видно из (3.4), сила жидкостного тре­
ния не зависит от вязкости протекающей через
зазор жидкости и длины зазора / и пропорцио­
нальна измеряемому давлению. Поэтому эф-
Рис. 16. Связь метрологичес- фективная площадь поршня (3.5), равная по-
ких и эксплуатационных характеристик поршневых ма- "Усумме геометрических площадей поршня и нометров с геометрически- цилиндра, определяется только геометрически­ми параметрами поршневых ми размерами поршневой пары R и г и не зави-пар и физическими свойст- сит от
физических свойств рабочей жидкости вами измерительной систе- и измеряемого давления, если последнее не на­столько велико, чтобы существенно деформи­ровать поршневую пару.

При умеренных давлениях (менее 10 МПа) деформациями поршне­вой пары в большинстве случаев можно пренебречь. Поэтому можно при­нять, что эффективная площадь поршня постоянна во всем диапазоне из­мерений, а следовательно сила, необходимая для уравновешивания дав­ления, прямо пропорциональна измеряемому давлению: Р = ^эф " Р-

В этом состоит одно из важнейших достоинств поршневых маномет­ров. Изменения эффективной площади поршня при больших давлениях относительно малы и легко учитываются расчетными поправками.

Основные эксплуатационные характеристики — утечка рабочей жид­кости через зазор поршневой пары и продолжительность свободного вра­щения поршня по инерции.

Расход жидкости через зазор поршневой пары, который существен при проведении измерений, определяется уравнением

3.1. Принцип действия, основы теории и типы поршневых манометровгде ц — динамическая вязкость рабочей жидкости; / — длина зазора меж­ду поршнем и цилиндром, остальные обозначения прежние.

Как видно из (3.6), наиболее эффективно расход жидкости может быть уменьшен путем уменьшения зазора h и увеличения вязкости рабо­чей жидкости ц.

В идеальном случае было бы желательно изготовлять поршневые па­ры с зазором h, близким к нулю, когда утечка жидкости практически отсутствует, но это технологически неосуществимо. Как показала прак­тика применения и изготовления образцовых поршневых манометров, оптимальный эазор составляет 1—3 мкм. (Для сравнения напомним, что размеры средней бактерии составляют 5—6 мкм и, если бы она не была эластичной, то не смогла бы проникнуть в такой зазор). При этом в зави­симости от диапазона измерений применяют рабочие жидкости различной вязкости. Например, при измерении избыточных давлений не более 150—250 кПа в качестве .рабочей жидкости применяется керосин (ju = = 2 • 10"3
Па-с), а при измерении давления до 1000—2000 МПа — касто­ровое масло (ju = 1 Па-с). Таким образом, влияние увеличения давления на утечку во многом компенсируется увеличением вязкости рабочей жидкости. При этом, как правило, существенно уменьшают радиус порш­ня, что делает утечку жидкости практически постоянной.

Если давление жидкости измеряется в замкнутомобъеме,.то по мере утечки жидкости происходит ее замещение путем опускания поршня и благодаря этому давление уменьшается очень мало. Учитывая (3.6), ско­рость опускания поршня

                                             

Размеры поршневой пары h, г, I и вязкость рабочей жидкости ix выби­раются так, чтобы при заданном давлении скорость опускания обеспечи­вала возможность произвести измерение в положении поршня, близком к расчетному уровню. По скорости опускания поршня контролируют также зазор между поршнем и цилиндром. Согласно (3.7) зазор

3.1. Принцип действия, основы теории и типы поршневых манометровh = ^    вм/г-у       17     .             (3.8)

Обеспечивая в большинстве случаев необходимую точность измере­ний, этот способ выгодно отличается от определения зазора по результа­там измерений радиусов поршня и цилиндра благодаря предельной прос­тоте его реализации.

Одна из важных характеристик поршневого манометра — продолжи­тельность свободного вращения поршня, которая определяется кривой

уменьшения скорости вращения во времени. Указанная закономерность имеет вид

со = со0

 е €t

(3.9)

3.1. Принцип действия, основы теории и типы поршневых манометровJ- h

где со0 — начальная угловая скорость вращения поршня; со — угловая скорость вращения поршня в момент времени; / — момент инерции поршня и наложенных на него грузов. Остальные обозначения прежние.

Контрольный вопрос № 4

■ Влияет ли вязкость жидкости, протекающей под действием давления через зазор между поршнем и цилиндром, иа эффек-■    тивную площадь поршня?

Если „да" — см. с. 47.  если „нет" — см. с. 50.

Как видно из (3.9), скорость вращения поршня уменьшается тем медленнее, чем меньше вязкость рабочей жидкости и размеры поршня ги/и чем больше момент инерции поршня с грузами и зазор h. Следует отметить, что при выборе оптимальных размеров поршневой пары необ­ходимо учитывать их влияние на утечки жидкости через зазор (3.6).

Измерительные системы поршневых манометров могут быть класси­фицированы по различным признакам: форме и конструкции поршне­вых пар, уравновешенности собственного веса поршня и способам его уравновешивания, видам измеряемой среды, способам уравновешивания измеряемого давления, назначению поршневого манометра, виду измеря­емого давления и пр.

Основные конструктивные формы цилиндрических поршневых пар, представленные на рис. 17, позволяют осуществить преобразование из­меряемого давления в силу или в давление другого назначения. Функ­циональные возможности указанных поршневых пар, наиболее часто реа­лизуемые в поршневых манометрах, отражены в табл. 7.

Таблица   7

3.1. Принцип действия, основы теории и типы поршневых манометров3.1. Принцип действия, основы теории и типы поршневых манометров3.1. Принцип действия, основы теории и типы поршневых манометровФорма порш­невой пары

Вид преобразования из­меряемого давления

Условия измерений

3.1. Принцип действия, основы теории и типы поршневых манометровПростая одно­ступенчатая порш­невая пара (рис. 17, а)

Тоже

Измеряемое избыточ­ное давление преобразу­ется в силу Р = ри ■ F

Измеряемое избыточ­ное отрицательное давле­ние преобразуется в силу

Давление над верхним торцом 2 поршня равно атмосферному давле­нию; измеряемое избыточное давле­ние ри = Рабе — Ратм; (Рабе >Рзтм) действует на нижний торец 1 порш-ия

Давление под нижним торцом 1 поршня равно атмосферному давле­нию; измеряемое отрицательное из­быточное давление ри = рабс ~" — Р атм (Рабс < Ратм). создается над верхним торцом 2 поршня

Продолжение

3.1. Принцип действия, основы теории и типы поршневых манометровФорма порш­невой пары

Вид преобразования из­меряемого давления

Условия измерений

 

 

3.1. Принцип действия, основы теории и типы поршневых манометров 

Измеряемая разность давлений преобразуется в избыточное давление Ри= <Pi~P,)X (рг~

При F1=F3

Различные формы поршневых пар при их применении в поршневых манометрах для измерения различных видов давления имеют свои пре­имущества и недостатки.

К контрольному вопросу № 4

Вам следует более внимательно просмотреть разд. 3.1. При этом особое внимание следует обратить на формулы (3.4) и (3.6). Согласно (3.6) при увеличении вязкости уменьшается расход жидкости через зазор. Поэтому сила трения (3.4) и эф­фективная площадь (3.5) остаются постоянными.

Простая одно­ступенчатая порш­невая пара (рис. 17,а)

Двухступенча­тая (дифферен­циальная) поршне­вая пара (рис. 17, б)

Тоже

Тоже

Трехступенча­тая (двойная диф­ференциальная) поршневая пара (рис. 17, в)

Измеряемое абсолют­ное давление преобразу­ется в силу Р= Page•F

Измеряемое избыточ­ное давление преобразу­ется в силу следующими способами: 1) Р, = д. ■/■’,;

РЬ\

Многократное умень­шение измеряемого дав­ления:     ;* Р, = -£ -Ри

Многократное увели­чение измеряемого дав­ления:    р Pi = -7Г- ■ Ри

Измеряемое абсолют­ное давление преобразу­ется в силу Р = Рабе * X (F^F,) -ретмх X (Ft-Ft) -pOCIMX X (F,-F.)

Приратм=О; F, = F3, (FF

Над верхним торцом 2 поршня создается вакуум (рабс = 0), из­меряемое абсолютное давление дей­ствует на нижний торец 1 поршня

Давление над верхним торцом 3 поршня равно атмосферному дав­лению; измеряемое избыточное Даг.-ление действует на:

1)      нижний торец / поршня (штуцер
2 открыт на атмосферу);

2)   кольцевую площадь штуцера 2
поршня  (на нижний торец / порш­
ня   действует   атмосферное   давле­
ние);

3)       нижний  торец  /  поршня и на
кольцевую площадь штуцера 2 (од­
новременно)

Измеряемое давление действует на нижний торец / поршня, кольце­вая площадь 2 сообщена с атмо­сферным давлением

Измеряемое давление действует на верхний торец 3 поршня, кольце­вая площадь штуцера 2 сообщена с атмосферным давлением^

Давления под нижним торцом 1 и над верхним торцом 4 поршня равны атмосферному давлению; камера 3 откачивается и в камеру 2 подается абсолютное давление рабс-При сообщении камеры 3 с атмо­сферным давлением измеряется из­быточное давление, при сообщении с атмосферным давлением камеры 2 в камере 3 измеряется отрицатель­ное избыточное давление

камеру 3 подается давление р3;р. ка­меру 2 — Рабс,на нижний торец 1 поршня действует избыточное дав­ление рк

Давление над верхним торцом 4 равно атмосферному давлению:   в

3.1. Принцип действия, основы теории и типы поршневых манометров

Рис. 17. Формы цилиндрических поршневых пар

При измерении избыточного давления наиболее предпочтительны од­ноступенчатые поршневые пары (рис. 17, а), которые обеспечивают мак­симальную конструктивную простоту манометров и технологичность их изготовления. При этом масса грузов, которые, как правило, применяют­ся для уравновешивания измеряемого давления, при измерении избыточ­ного давления (рабс > Рагм) прилагается непосредственно к верхнему торцу 2 поршня; а при измерении отрицательного избыточного давления (Рабе <Рзгм) — к нижнему торцу 1 поршня.

Контрольный вопрос № 5

Вы располагаете двумя поршневыми манометрами, один из которых имеет эффективную площадь F = 0,05 см2, а другой —F — I см2 . Какой из указанных манометров следует, по Вашему мнению, применить при измерении давления до 60 МПа; F = = 0,05 см2 или F-1 см2
?

Если Вы считаете, что F = 0,05 см2, то откройте с. 50, если F= 1 см2
-см. с. 52.

При измерении абсолютного давления и разности применение одно­ступенчатой поршневой пары приводит к существенному усложнению конструкции поршневого манометра и методики выполнения измерений. Так, при измерении абсолютного давления пространство над верхним торцом 2 поршня должно быть вакуумировано, что приводит к необхо­димости герметизации верхней части прибора, а это существенно услож­няет процесс наложения уравновешивающих грузов при измерении дав­ления. В данном случае более предпочтительно применение трехступенча­той поршневой щр;.г (рис. 17. в), которая позволяет подводить измеря-

емое и опорное давления непосредственно в замкнутые измерительные камеры 2 и 3. При этом обеспечивается свободный доступ к верхнему торцу 4 поршня при наложении уравновешивающихся грузов.

Двухступенчатые (дифференциальные) поршневые пары (рис. 17, б) наиболее часто применяются для многократного уменьшения измеря­емого давления при измерении высоких избыточных давлений или уве­личения измеряемого давления при измерении низких давлений. Такие преобразователи входят в состав измерительных систем (рис. 18) порш­невых манометров, применяемых для измерения низких или высоких

избыточных давлений.

 

а

Рис. 18. Измерительные системы поршневых манометров

В поршневой системе для измерения низких избыточных давлений (рис. 18, а) последнее предварительно двухступенчатой поршневой парой увеличивается в отношении площадей ^з/f2 До давления pY —рИ
• F3/F2,
которое затем измеряется простым одноступенчатым груэопоршневым манометром. При этом измеряемое избыточное давление

Ри

tng

(3.10)

где отношение площадей обычно составляет 1:10 или 1:100 в зависимос­ти от измеряемого низкого давления.

Поршневая система, (рис. 18,6) позволяет, наоборот измерять высо­кие давления с помощью простых одноступенчатых поршневых маномет-

ров, применяемых при измерении средних давлений. В данном случае из­меряемое давление

А.—^—^-.                         (3.11)

Этот способ имеет существенные преимущества по сравнению с изме­рением высоких давлений с помощью простой поршневой пары, так как не требует чрезмерного уменьшения площади поршня F, при одновре­менном увеличении массы грузов т. Существенно уменьшаются также и габаритные размеры поршневого манометра.

Одним из важнейших преимуществ указанных поршневых систем, особенно при измерении низких давлений, является возможность взаим­ного уравновешивания собственного веса поршней, что позволяет довес­ти нижний предел измерений до нуля, а вместе с тем и провести контроль ряда метрологических характеристик при отсутствии давления. Поэтому принцип предварительного уравновешивания собственного веса поршня находит все большее применение.

Помимо указанного выше, применяются также способы предвари­тельного уравновешивания собственного веса поршня рычажным проти­вовесом, давлением столба жидкости, пружинным механизмом и др. Примеры конструктивного исполнения различных способов уравновеши­вания веса поршня, а также способов приложения к поршню уравнове­шивающего измеряемое давление усилия, приводятся в разд. 3.3.

К контрольному вопросу № 4

Ваш вывод правилен. В то же время не забывайте, что при высоких давлениях, когда появляются существенные деформа­ции поршня и цилиндра, изменениями вязкости жидкости пре­небрегать уже нельзя.

К контрольному вопросу № 5

Вы сделали правильный выбор. Согласно формуле (1.33) при F = 0,05 см2 масса грузов, а, следовательно, и габаритные размеры прибора находятся в разумных пределах.