Архив метки: сопротивление

3.2. Составление исходной схемы замещения

3.2.1. При расчете токов КЗ аналитическим методом следует предварительно по исходной расчетной схеме составить соответствующую схему замещения. При этом сопротивления всех элементов схемы и ЭДС источников энергии могут быть выражены как в именованных, так и в относительных единицах.

3.2.2. Если известны фактические при принятых исходных условиях коэффици-
енты трансформации всех трансформаторов и автотрансформаторов расчетной схемы, то составление схемы замещения следует производить с учетом этих коэффициентов. Если же фактические коэффициенты трансформации части трансформаторе и автотрансформаторов неизвестны, то допускается при составлении схемы замещения указанные коэффициенты учитывать приближенно, как указано в п. 3.2.5.

3.2.3. При выражении параметров элементов эквивалентной схемы замещения в именованных единицах с приведением параметров различных элементов исходной расчетной схемы к выбранной основной (базисной) ступени напряжения сети и с учетом фактических коэффициентов трансформации силовых трансформаторов и автотрансформаторов приведенные значения ЭДС источников энергии и сопротивления различных элементов схемы следует определять по формулам

                                                                  3.2. Составление исходной схемы замещения;                                                        (3.1)

3.2. Составление исходной схемы замещения                                                                                                   (3.2)

    E и Z — истинные значения ЭДС источника энергии их       сопротивления какого-либо элемента исходной расчетной схемы;

3.2. Составление исходной схемы замещения и     3.2. Составление исходной схемы замещения  — их приведенные значения;

 3.2. Составление исходной схемы замещения — коэффициенты трансформации трансформаторов или автотрансформаторов, включенных каскадно между ступенью напряжения сети,
где находятся элементы с подлежащими приведению ЭДС Е и
сопротивлением Z, и основной ступенью напряжения.

Если ЭДС источника энергии и сопротивление какого-либо элемента расчетной схемы выражены в относительных единицах при номинальных условиях (т.е. ЭДС при номинальном напряжении Uном, а сопротивление — при номинальном напряжении и номинальной мощности sном), то значения соответствующей ЭДС и сопротивления, приведенные к основной ступени напряжения сети, следует определять по формулам

3.2. Составление исходной схемы замещения                                             (3.3)

3.2. Составление исходной схемы замещения                                               (3.4)

где  3.2. Составление исходной схемы замещенияи  3.2. Составление исходной схемы замещения -значения ЭДС источника энергии и сопротивления элемента расчетной схемы в относительных единицах при номинальных условиях.

Примечание. Здесь и далее под коэффициентом трансформации трансформатора (автотрансформатора) понимается отношение напряжения холостого хода его обмотки, обращенной в сторону выбранной основной ступени напряжения сети к напряжению холостого хода другой обмотки.

3.2.4. При выражении параметров элементов эквивалентной схемы замещения в относительных единицах с приведением параметров различных элементов исход­ной расчетной схемы к базисным условиям и с учетом фактических коэффициентов трансформации силовых трансформаторов и автотрансформаторов необходимо:

1) задаться базисной мощностью S6 и для одной из ступеней напряжения исход­-
ной расчетной схемы, принимаемой за основную, выбрать базисное напряжение U6 осн

2)    определить базисные напряжения других ступеней напряжения расчетной схе­-
мы, используя формулу

 

                                       3.2. Составление исходной схемы замещения                                                   (3.5)

 

где  3.2. Составление исходной схемы замещениякоэффициенты трансформации трансформаторов и автотрансфор­маторов, включенных каскадно между основной и N-й. ступенями напряжения;

3) найти искомые значения ЭДС источников энергии и сопротивлений всех
элементов схемы замещения в относительных единицах при выбранных базис-­
ных условиях, используя формулы

                                                                        3.2. Составление исходной схемы замещения                                                   (3.6)

или

3.2. Составление исходной схемы замещения                                                   (3.7)                                                            3.2. Составление исходной схемы замещения                                                    (3.8)

       ИЛИ        

                                                           3.2. Составление исходной схемы замещения                                                    (3.9)

 где UбN — базисное напряжение той ступени напряжения исходной расчетной схе­мы, на которой находится элемент, подлежащий приведению.

Формулы (3.6) и (3.8) следует использовать в тех случаях, когда значения ЭДС источника энергии и приводимое сопротивление заданы в именованных единицах, а формулы (3.7) и (3.9) — когда значения этих величин заданы в относительных едини­цах при номинальных условиях.

Обычно в именованных единицах задано сопротивление воздушных линий, кабе­лей и реакторов, а в относительных единицах при номинальных условиях — сопро­тивление генераторов и синхронных компенсаторов. Сопротивление неподвижного электродвигателя (сопротивление КЗ) и сопротивление трансформатора в относитель­ных единицах при номинальных условиях определяют по формулам

3.2. Составление исходной схемы замещения                                                                      (3.10)

3.2. Составление исходной схемы замещения                                                                       (3.11)

 

где 3.2. Составление исходной схемы замещения  — кратность пускового тока по отношению к номинальному току; 3.2. Составление исходной схемы замещения— напряжение короткого замыкания трансформатора в процентах.

3.2.5.В тех случаях, когда отсутствуют данные о фактически используемых в ус­ловиях эксплуатации коэффициентах трансформации трансформаторов и автотранс­форматоров, допустимо их принимать равными отношению средних номинальных напряжений сетей, связанных этими трансформаторами и автотрансформаторами. При этом рекомендуется использовать следующую шкалу средних номинальных напряжений сетей 3.2. Составление исходной схемы замещения , кВ: 3,15; 6,3; 10,5; 13,8; 15,75; 18; 20; 24; 27; 37; 115; 154; 230; 340; 515; 770; 1175.

3.2.6.При выражении параметров элементов эквивалентной схемы замещения в именованных единицах с приведением параметров различных элементов исходной расчетной схемы к выбранной основной ступени напряжения, используя при этом приближенный способ учета коэффициентов трансформации трансформаторов и автотрансформаторов, приведенные значения ЭДС источников энергии и сопротив­ления различных элементов схемы следует определять по формулам

                                                                      3.2. Составление исходной схемы замещения                                                          (3.12)

                                                                                3.2. Составление исходной схемы замещения                                               (3.13)

где   3.2. Составление исходной схемы замещения     — среднее номинальное напряжение той ступени напряжения сети, кото­рая принята за основную;

3.2. Составление исходной схемы замещения    — среднее номинальное напряжение той ступени напряжения сети, на ко­торой находится элемент с подлежащими приведению параметрами.    Если ЭДС источника энергии и сопротивление какого-либо элемента расчетной схемы выражены в относительных единицах при номинальных условиях, то при при­ближенном учете коэффициентов трансформации трансформаторов и автотрансформаторов их значения, приведенные к основной ступени напряжения сети, следует находить по формулам

3.2. Составление исходной схемы замещения                                                  (3.14)

3.2. Составление исходной схемы замещения                                              (3.15)

3.2.7.      При выражении параметров элементов эквивалентной схемы замещения в относительных единицах с приведением параметров различных элементов исходной расчетной схемы к базисным условиям, используя при этом приближенный способ учета коэффициентов трансформации трансформаторов и автотрансформаторов базисная мощность выбирается произвольно, а в качестве базисного напряжения любой ступени напряжения сети следует принимать среднее номинальное напряжение соответствующей ступени. В этом случае искомые значения ЭДС источников энергии сопротивлений элементов схемы замещения в относительных единицах следует определять по формулам

3.2. Составление исходной схемы замещения                                                        (3.16)

или  

  3.2. Составление исходной схемы замещения                                                        (3.17)

3.2. Составление исходной схемы замещения                         (3.18)

 

3.2. Составление исходной схемы замещения                          (3.19)

 

3.2.8. Независимо от принятого способа составления схемы замещения прямой последовательности (в именованных или относительных единицах, с учетом факти­ческих коэффициентов трансформации трансформаторов или при приближенном учете этих коэффициентов) в этой схеме должны быть представлены все элементы исход­ной расчетной схемы, причем источники энергии (генераторы, синхронные компенсаторы, а также электродвигатели мощностью 100 кВт и более, если они не отделены от расчетной точки КЗ токоограничивающим реактором или трансформатором) и обобщенные нагрузки узлов должны быть введены в схему ЭДС и индуктивными
сопротивлениями, соответствующими рассматриваемому моменту времени. Так, при расчете начального значения периодической составляющей они должны быть представлены в исходной схеме замещения сверхпереходными ЭДС и сверхпереходными индуктивными сопротивлениями (см. п. 5.2). Все остальные элементы исходной рас­четной схемы должны быть представлены в схеме замещения сопротивлениями пря­мой последовательности. Трехобмоточные трансформаторы, автотрансформаторы, трансформаторы и автотрансформаторы с расщепленной обмоткой низшего напря­жения, а также сдвоенные реакторы должны быть представлены своими схемами за­мещения. Эти схемы, а также расчетные выражения для определения их параметров приведены в табл. 4.1.

3.2.9. Для расчета токов при несимметричных КЗ целесообразно использовать
метод симметричных составляющих. При этом кроме схемы замещения прямой последовательности для расчета двухфазного КЗ необходимо составить схему замеще­ния обратной последовательности, а для расчета однофазного и двухфазного КЗ на  землю — также схему замещения нулевой последовательности.

Схема замещения обратной последовательности по конфигурации аналогична схеме замещения прямой последовательности, т.е. в ней должны быть представлены все элементы исходной расчетной схемы. При этом электрические машины с враща­ющимся ротором и обобщенные нагрузки узлов должны быть учтены соответствую­щим сопротивлением обратной последовательности, а ЭДС приняты равными нулю.

Индуктивное сопротивление обратной последовательности синхронных и асинх­ронных электродвигателей допустимо принимать численно равным индуктивной составляющей их сопротивления короткого замыкания. Сопротивление обратной пос­ледовательности обобщенной нагрузки какого-либо узла в относительных единицах, отнесенное к полной мощности нагрузки и среднему номинальному напряжению той ступени напряжения сети, где эта нагрузка присоединена, следует принимать рав­ным: при напряжении сети 35 кВ и более X 2(ном) = 0,45 и при напряжении сети менее 35 кВ X 2(ном) =0,35.

Схема замещения нулевой последовательности обычно существенно отличается от схем прямой и обратной последовательностей. Ее конфигурация определяется в основ­ном положением расчетной точки КЗ и схемами соединения обмоток трансформаторов и автотрансформаторов исходной расчетной схемы. Чтобы составить схему замещения нулевой последовательности, следует допустить, что в точке несимметричного КЗ все фазы соединены между собой накоротко и между этой точкой и землей приложено на­пряжение нулевой последовательности. Затем, идя от точки КЗ поочередно в разные стороны, необходимо на каждой ступени напряжения исходной расчетной схемы выя­вить возможные пути циркуляции токов нулевой последовательности (циркуляция этих токов возможна только в тех ветвях, которые образуют контуры для замыкания токов через землю и параллельные ей цепи) и соответственно определить элементы этой схе­мы, которые должны быть введены в схему замещения. При этом следует иметь в виду, что сопротивление нулевой последовательности трансформатора со стороны обмотки, соединенной в треугольник или звезду с незаземленной нейтралью, бесконечно велико, поэтому трансформаторы с указанными схемами соединения и все находящиеся за ними элементы исходной расчетной схемы в схему замещения нулевой последовательности не входят.

Циркуляция токов нулевой последовательности возможна только в том случае, если обмотка трансформатора, обращенная в сторону расчетной точки КЗ, соединена в звезду с заземленной нейтралью.

Схема замещения нулевой последовательности двухобмоточного трансформато­ра, обмотки которого соединены по схеме Y0/Δ, представлена на рис. 3.1, а. Поскольку индуктивное сопротивление X 0 во много раз больше сопротивлений рассеяния обмо­ток Хl и Xll, то в исходной схеме замещения нулевой последовательности трансформа­тор с указанной схемой соединения обмоток представляется в виде одного индуктив­ного сопротивления X = Хl +Xll, которое с противоположной стороны (идя от расчета нулевого потенциала схемы замещения (с землей). Таким образом, если в ис­ходной расчетной схеме за таким транс­форматором имеются какие-либо эле­менты (трансформаторы, генераторы, воздушные или кабельные линии и т.д.). то независимо от их вида и схемы со­единения их обмоток эти элементы в схему замещения нулевой последова­тельности не вводятся. Это объясняет­ся тем, что при соединении обмоток трансформатора по схеме Y/Δ ЭДС нулевой последовательности, наводи­мая в соединенной треугольником об­мотке, полностью компенсируется па­дением напряжения от тока нулевой последовательности в индуктивном со­противлении рассеяния этой обмотки вследствие чего напряжение нулевой последовательности на выводах этой обмотки равно нулю.

 

 

3.2. Составление исходной схемы замещения3.2. Составление исходной схемы замещения                                                                                                 

1.3. Буквенные обозначения величин

I

                            — ток, действующее значение;

i                            — ток, мгновенное значение;

I                            — ток комплексный, действующее значение;

1.3. Буквенные обозначения величин                         — ток, амплитудное значение;

/ном                        — номинальный ток;

1.3. Буквенные обозначения величин                         — ударный ток КЗ;

 1.3. Буквенные обозначения величин                      — ток электродинамической стойкости;

1.3. Буквенные обозначения величин                  — ток включения, действующее и мгновенное значения;

1.3. Буквенные обозначения величин                  — сквозной ток, действующее и мгновенное значения;

1.3. Буквенные обозначения величин      — предельный сквозной ток, действующее и мгновенное значения;

1.3. Буквенные обозначения величин               — отключаемый ток, действующее и мгновенное значения;

1.3. Буквенные обозначения величин   — номинальный ток отключения электрического аппарата;                                          1.3. Буквенные обозначения величин                      — ток в момент t;

1.3. Буквенные обозначения величин                      — ток в момент τ1.3. Буквенные обозначения величин,

1.3. Буквенные обозначения величин                      — ток термической стойкости;

1.3. Буквенные обозначения величин                        — ток установившегося режима;

1.3. Буквенные обозначения величин                         — ток КЗ, общее обозначение;

1.3. Буквенные обозначения величин                     — периодическая составляющая тока КЗ;

1.3. Буквенные обозначения величин                     — апериодическая составляющая тока КЗ (1.3. Буквенные обозначения величин);

1.3. Буквенные обозначения величин                         — начальное действующее значение периодической составляющей тока КЗ (t = 0);

1.3. Буквенные обозначения величин                                       — начальное значение апериодической составляющей тока КЗ (t = 0);

1.3. Буквенные обозначения величин                                             — периодическая и апериодическая составляющие тока КЗ в момент t = τ;

1.3. Буквенные обозначения величин                        — токи соответственно фаз А, В, С;

1.3. Буквенные обозначения величин                                      — ток в нейтральном проводе;

1.3. Буквенные обозначения величин                                             — ток соответственно прямой, обратной и нулевой последовательностей;

1.3. Буквенные обозначения величин                                             — ток, ожидаемый в цепи с токоограничивающим аппаратом;

1.3. Буквенные обозначения величин                                      — ток суммарный;

1.3. Буквенные обозначения величин                             — ток продолжительного режима, допустимый;

1.3. Буквенные обозначения величин                          — ток нормального режима, расчетный;

Iпрод.расч                             — ток продолжительного режима, расчетный;

1.3. Буквенные обозначения величин                     — токи соответственно по осям d и q ;

I                           — переходный ток;

I’’                            — сверхпереходный ток;

1.3. Буквенные обозначения величин                          — ток плавления вставки предохранителя;

U, u                       — напряжение, действующее и мгновенное значения;

U раб.нб                             — наибольшее рабочее напряжение;

1.3. Буквенные обозначения величин                      — номинальное напряжение;

U1, U2,, U0                    — напряжения соответственно прямой, обратной и нулевой последовательностей;

ΔU                         — потеря напряжения;

φ                            — угол сдвига фаз между напряжением и током;

cos φ                      — коэффициент мощности;

E, е                        — электродвижущая сила, действующее и мгновенное значения;

Р                            — мощность активная;

Q                           — мощность реактивная;

S                            — мощность полная, модуль;

S                            — мощность полная, комплексная;

f                             — частота колебаний электрической величины;

ω                            — частота колебаний электрической величины, угловая;

R, r                        — сопротивление активное;

X, х                        — сопротивление реактивное;

Z                           — сопротивление полное, модуль;

Z                           — сопротивление полное, комплексное;

XL                                      — сопротивление реактивное, индуктивное;

Хc                                      — сопротивление реактивное, емкостное;

Zв                                      — сопротивление волновое;

uв                                      — восстанавливающееся напряжение на контактах         коммутационного ап­парата;            

vb                                        — скорость восстановления напряжения;

Uвз, uвз                             -возвращающееся напряжение на контактах коммутационного       аппарата;

Z1 Z2, Z0    — сопротивления соответственно прямой, обратной и нулевой   последовательностей;

Y                           — проводимость электрическая, модуль;

Y                           — проводимость электрическая, комплексная;

g                           — проводимость активная;

 b                          — проводимость реактивная;

L                          — индуктивность собственная;

М                         — индуктивность взаимная;

Ксв                     — коэффициент связи;

σ                               — коэффициент рассеяния;

р                —  удельное сопротивление;

у                          — удельная проводимость;

а               — температурный коэффициент сопротивления;

β                        — температурный коэффициент теплоемкости;

Wэ                     — энергия электрическая;

Wэм                   — энергия электромагнитная;

Н                   — напряженность магнитного поля, модуль;

H                  — напряженность магнитного поля, вектор;

Е                   — напряженность электрического поля, модуль;

Е                  — напряженность электрического поля, вектор;

ε                   — проницаемость диэлектрическая абсолютная;

εr                  — проницаемость диэлектрическая относительная;

ε0                  — постоянная электрическая;

μ                   — проницаемость магнитная абсолютная;

μr                                        — проницаемость магнитная относительная;

1.3. Буквенные обозначения величин                         — постоянная магнитная;

υ                   — температура в шкале Цельсия;

Т                   — температура в шкале Кельвина;

Θ                   — превышение температуры;

Т                   — постоянная времени электрической цепи;

Т                   — период колебаний электрической величины;

                 — постоянная времени затухания апериодической составляющей тока КЗ;

Куд               — ударный коэффициент;

βнорм             — нормированное процентное содержание апериодической составляющей в отключаемом токе;

n                 — коэффициент трансформации;

n                 — отношение числа витков;

N                 — число витков обмотки;

С                 — емкость;

с                 — удельная теплоемкость;

λ                 — плотность материала;

s                 — скольжение;

sкр               — скольжение критическое;

S                 — сечение проводника;

М                — момент вращающихся масс;

Тj                — постоянная инерции (механическая постоянная);

F                 — поверхность;

F                 — сила, вектор;

F                 — сила, модуль;

q                 — удельная теплоотдача;

Ф                — тепловой поток;

Е                — модуль упругости;

J                 — момент инерции;

W                — момент сопротивления поперечного сечения проводника;

 

2.1.6. В соответствии с ПУЭ допускается не проверять по режиму КЗ некоторые проводники и электрические аппараты, защищенные плавкими предохранителями, а также проводники и аппараты в цепях маломощных, неответственных потребите­лей, имеющих резервирование в электрической или технологической части. При этом должны быть исключены возможности взрыва или пожара.

Характеристики и параметры электрооборудования

118.         

Комплексная схема заме­щения электроустановки (Комплексная схема замещения) — электрическая схема, в которой схемы замещения прямой, обратной и нулевой последовательностей: или других состав­ляющих объединены соответствующим об­разом с учетом соотношений между сос­тавляющими токов и напряжения в месте повреждения.

119.          Расчетная схема электроустановки — электрическая схема электроустановки, при которой имеют место расчетные усло­вия короткого замыкания для рассматри­ваемого ее элемента.

120.          Ток термической стойкости метрического аппарата при коротком замыкании
(Ток термической стойкости)- нормированный ток, термическое дейст­вие которого электрический аппарат спо­собен выдержать при коротком замыкании в течение нормированного времени термической стойкости.

121.          Ток электродинамической стойкости электрического аппа­рата при коротком замыкании (Ток электродинамической стой­кости) — нормированный ток, электродинамическое действие которого электрический ап­парат способен выдержать при коротком замыкании без повреждений, препятствую­щих его дальнейшей работе.

122.          Стойкость элемента электроустановки к току короткого замыкания — способность элемента электроустановки выдерживать термическое и электродина­мическое действия тока короткого замыка­ния без повреждений, препятствующих его дальнейшей исправной работе.

123.          Электрический реактор (реактор) (не допустимо: дроссель) – индуктивная катушка, предназначенная для использования её в силовой электрической цепи.

124.          Однофазный реактор – реактор, включаемый в однофазную электрическую цепь, или реактор, включаемый в одну из фаз многофазной цепи и не имеющий существенной связи с аналогичными реакторами, включенными в другие фазы этой цепи.

125.    Многофазный реактор – реактор, включаемый в многофазную электрическую цепь, части которого, относящиеся к разным фазам, существенно связаны между собой конструктивно или электромагнитным полем.

Примечание: многофазный реактор, предназначенный для включения в трехфазную цепь с практически симметричной в номинальном режиме системой токов или напряжений, называется трехфазным.

126.    Реактор последовательного включения – реактор, включаемый последовательно в фазу сети переменного тока или полюс сети постоянного тока.

127.    Реактор параллельного включения – реактор, включаемый между фазой и нейтралью или между фазами сети.

128.    Секционный реактор – реактор, включаемый между секциями шин электроустановок.

129.    Групповой реактор – реактор, включаемый последовательно с группой линий или приемников электрической энергии.

130.    Пусковой реактор – токоограничивающий реактор, предназначенный для пуска электродвигателей.

131.    Заземляющий дугогасящий реактор (дугогасящий реактор)  (не допустимо: дугогасящая катушка)— однофазный реактор, предназначенный для включения между нейтралью и землей с целью компенсации емкостной составляющей тока от линии к земле при однофазном замыкании на землю.

132.    Заземляющий токоограничивающий реактор – токоограничивающий однофазный реактор с относительно малым индуктивным сопротивлением, предназначенный для включения между нейтралью и землей с целью ограничения тока при коротком замыкании сети на землю.

133.    Сдвоенный реактор – реактор, обмотка каждой фазы которого состоит из двух практически симметричных ветвей, имеющих существенную магнитную связь, и присоединяемых концом одной ветви и началом другой к общему зажиму.

Примечания: 1) конец и начало ветвей определяются по согласному направлению обмотки. 2) При необходимости подчеркнуть, что реактор не является сдвоенным, допустимо применять термин «одинарный реактор».

134.    Полное сопротивление реактора (сопротивление реактора) – величина, определяемая отношением напряжения к току реактора при практически синусоидальном напряжении.

135.    Активное сопротивление реактора – величина, определяемая отношением потерь реактора за вычетом потерь от постоянной составляющей тока в обмотке управления к квадрату тока реактора и количеству фаз.

136.    Индуктивное сопротивление реактора –
величина, определяемая квадратным корнем из разности квадратов полного и активного сопротивления реактора.

137.    Сопротивление нулевой последовательности реактора – полное сопротивление реактора с соединением в звезду, соответствующее номинальному напряжению номинальной частоты, приложенному между соединенными вместе линейными зажимами и нейтралью, умноженное на количество фаз.

138.    Сопротивление сдвоенного реактора – полное сопротивление сдвоенного реактора при последовательном включении ветвей его обмотки

139.    Сопротивление ветви сдвоенного реактора –
полное сопротивление ветви обмотки сдвоенного реактора при отсутствии тока в другой ветви.

140.    Сквозное сопротивление сдвоенного реактора – полное сопротивление сдвоенного реактора при параллельном включении ветвей его обмотки.

141.    Коэффициент связи сдвоенного реактора – величина, определяемая отношением взаимной индуктивности ветвей сдвоенного реактора к собственной индуктивности одной из ветвей.

142.    Начальный пусковой ток асинхронного двигателя с короткозамкнутым ротором (синхрон­ного двигателя, синхронного ком­пенсатора) (начальный пусковой ток) -максимальный действующий ток, потреб­ляемый заторможенным асинхронным дви­гателем с короткозамкнутым ротором (син­хронным двигателем, синхронным компен­сатором) при питании от питающей сети с номинальным значением напряжения и частоты.

Примечание. Эта величина явля­ется расчетной без учета переходных яв­лений

143.    Начальный пусковой мо­мент асинхронного двигателя с короткозамкнутым ротором (син­хронного двигателя, синхронного компенсатора). (начальный пусковой момент) — минимальный измеренный момент, разви­ваемый асинхронным двигателем с корот­козамкнутым ротором (синхронным двига­телем, синхронным компенсатором) в за­торможенном состоянии при номинальных значениях напряжения и частоты питаю­щей сети.

144.    Минимальный пусковой мо­мент асинхронного двигателя с короткозамкнутым ротором (син­хронного двигателя, синхронного компенсатора) (минимальный пусковой момент) — минимальный вращающий момент, раз­виваемый асинхронным электродвигателем с короткозамкнутым ротором (синхронным двигателем, синхронным компенсатором) между нулевой частотой вращения и час­тотой вращения, соответствующий макси­мальному моменту при номинальных зна­чениях напряжения и частоты питающей сети.

145.    Входной момент в синхро­низм — максимальный вращающий момент на­грузки, при котором синхронный двигатель, подключенный к питающей сети с номи­нальными напряжением и частотой может войти в синхронизм при подаче возбужде­ния.

146.    Номинальный входной мо­мент синхронного вращающегося
электродвигателя —
вращающий момент, который развива­ет синхронный вращающийся электродвига­тель при номинальных напряжении и час­тоте питающей сети, замкнутой накоротко обмотке возбуждения и при частоте вра­щения, равной 95% синхронной.

147.    Максимальный момент син­хронного вращающегося двигате­ля — наибольший вращающий момент, ко­торый может развивать синхронный вра­щающийся двигатель без выпадения из синхронизма, работая при номинальных значениях напряжения и частоты питаю­щей сети.

148.    Максимальный момент асинхронного вращающегося дви­гателя — наибольший вращающий момент, который может развивать асинхронный вращаю­щийся двигатель при работе с номиналь­ными значениями напряжения и частоты питающей сети.

149.      Момент инерции нагрузки вращающегося электродвигателя (момент инерции) -приведенный к валу электродвигателя момент инерции сочлененного с ним меха­низма.

          Примечание. Устанавливается как наибольшее значение момента инерции, при котором параметры вращающегося электродвигателя должны сохраняться в пределах установленных норм.

150.      Коэффициент синхронизи­рующей мощности синхронной ма­шины — производная активной мощности син­хронной машины по углу сдвига между напряжением на выводах обмотки якоря и ее электродвижущей силой по про­дольной оси.

151.      Полное синхронное сопро­тивление синхронной машины (полное синхронное сопротивле­ние) — отношение векторной разности между электродвижущей силой и напряжением на выводах обмотки якоря синхронной машины к току этой обмотки в уста­новившемся режиме.

152.      Полное сопротивление об­ратной последовательности син­хронной (асинхронной) маши­ны (полное сопротивление обратной последовательности) — отношение основной гармоники на­пряжения на обмотке якоря (первичной обмотке) обратной последовательности синхронной (асинхронной) машины к току обратной последовательности той же час­тоты в той же обмотке.

153.      Полное сопротивление ну­левой последовательности син­хронной (асинхронной) машины (полное сопротивление нулевой последовательности) — отношение основной гармоники на­пряжения нулевой последовательности в обмотке якоря (первичной обмотке) син­хронной (асинхронной) машины к току нулевой последовательности той же час­тоты в той же обмотке.

154.      Синхронное индуктивное сопротивление по продольной оси синхронной машины (синхронное индуктивное сопро­тивление по продольной оси) — отношение установившегося значения основной гармоники электродвижущей си­лы, индуктируемой в обмотке якоря син­хронной машины полным магнитным пото­ком, обусловленным составляющей тока в этой обмотке по продольной оси, к этой составляющей тока при синхронной час­тоте вращения.

155.      Синхронное индуктивное сопротивление по поперечной оси синхронной машины (синхронное индуктивное со­противление по поперечной оси) — отношение установившегося значения ос­новной гармоники электродвижущей силы, индуктируемой в обмотке якоря синхрон­ной машины полным магнитным потоком, обусловленным составляющей тока в этой обмотке по поперечной оси, к этой состав­ляющей тока при синхронной частоте вращения.

156.      Переходное индуктивное сопротивление обмотки якоря по продольной оси синхронной ма­шины (переходное индуктивное сопро­тивление по продольной оси) — отношение начального значения основной гармоники электродвижущей силы, индук­тируемой в обмотке якоря синхронной машины полным магнитным потоком, обу­словленным составляющей тока в этой обмотке по продольной оси, к начальному значению этой составляющей тока при ее внезапном изменении, отсутствии успокои­тельных контуров, наличии замкнутой об­мотки возбуждения по продольной оси и синхронной частоте вращения.

157.      Переходное индуктивное сопротивление обмотки якоря по поперечной оси синхронной ма­шины (переходное индуктивное сопро­тивление по поперечной оси) — отношение начального значения основ­ной гармоники электродвижущей силы, индуктируемой в обмотке якоря синхрон­ной машины полным магнитным потоком, обусловленным составляющей тока в этой обмотке по поперечной оси к начальному значению этой составляющей тока при ее внезапном изменении, отсутствии конту­ров, наличии замкнутой обмотки возбуж­дения по поперечной оси и при синхрон­ной частоте вращения.

158.      Сверхпереходное индук­тивное сопротивление обмотки якоря по продольной оси син­хронной машины (сверхпереходное индуктивное сопротивление по продольной оси) — отношение начального значения основ­ной гармоники электродвижущей силы, индуктируемой в обмотке якоря синхрон­ной машины полным магнитным потоком, обусловленным составляющей тока в этой обмотке по продольной оси, к начальному значению этой составляющей тока при ее внезапном изменении, наличии успокои­тельных контуров по продольной оси и синхронной частоте вращения.

159.      Сверхпереходное индуктив­ное сопротивление обмотки якоря по поперечной оси синхронной машины (сверхпереходное индуктивное сопротивление по поперечной оси) — отношение начального значения основ­ной гармоники электродвижущей силы, ин­дуктируемой в обмотке якоря синхронной машины полным магнитным потоком, об­условленным составляющей тока в этой обмотке по поперечной оси, к начальному значению этой составляющей тока при ее внезапном изменении, наличии успокои­тельных контуров по поперечной оси и синхронной частоте вращения.

160.       Активное сопротивление прямой последовательности об­мотки якоря синхронной машины (активное сопротивление пря­мой последовательности) — отношение части активной состав­ляющей основной гармоники напряжения обмотки якоря синхронной машины, соот­ветствующей основным и добавочным по­терям в этой обмотке, обусловленным ос­новной гармоникой тока в ней прямой последовательности, к этой гармонике тока при номинальной частоте вращения.

161.       Индуктивное сопротивле­ние обратной последовательности синхронной (асинхронной) маши­ны (индуктивное сопротивление об­ратной последовательности) — отношение реактивной составляющей ос­новной гармоники напряжения обратной последовательности на обмотке якоря (первичной обмотке) к току обратной по­следовательности той же частоты, в той же обмотке синхронной (асинхронной) маши­ны.

162.      Активное сопротивление об­ратной последовательности об­мотки якоря синхронной машины (активное сопротивление обрат­ной последовательности) — отношение активной составляющей ос­новной гармоники напряжения якоря об­ратной последовательности, обусловленной синусоидальным током якоря обратной по­следовательности номинальной частоты, к этому току при номинальной частоте вра­щения синхронной машины.

163.      Индуктивное сопротивле­ние нулевой последовательности синхронной (асинхронной) маши­ны (индуктивное сопротивление ну­левой последовательности) — отношение реактивной составляющей основной гармоники напряжения нулевой последовательности на обмотке якоря (первичной обмотке) к току нулевой по­следовательности той же частоты, в той же обмотке синхронной (асинхронной) машины.

164.      Активное сопротивление нулевой последовательности об­мотки якоря синхронной маши­ны (активное сопротивление нуле­вой последовательности) — отношение активной составляющей ос­новной гармоники напряжения якоря нуле­вой последовательности синхронной ма­шины, обусловленной основной гармо­никой тока якоря нулевой последователь­ности номинальной частоты, к этой гар­монике тока при номинальной частоте вращения синхронной машины.

165.      Установившийся ток корот­кого замыкания синхронного ге­нератора (установившийся ток короткого замыкания) — ток, установившийся при коротком замыкании в обмотке якоря возбужден­ного синхронного генератора, вращающего­ся с синхронной частотой.

166.       Ударный ток короткого замыкания синхронной машины (ударный ток короткого замы­кания) — максимальное значение тока в обмотке якоря синхронной машины, в течение пер­вого полупериода после его короткого за­мыкания, когда апериодическая состав­ляющая наибольшая.

167.          Критическое сопротивление при коротком закипании (Критическое сопротивление) — внешнее сопротивление синхронной машины, при коротком замыкании за кото­рым возбуждение синхронной машины в ус­тановившемся режиме короткого замыка­ния равно предельному, а напряжение на выводах обмотка статора – номинальному.

168.          Критический ток короткого замыкания синхронной машины
(Критический ток) — значение установившегося тока синхрон­ной машины при короткой замыкания за критическим сопротивлением.

169.       Собственная постоянная времени обмотки синхронной ма­шины (собственная постоянная време­ни обмотки) — электромагнитная постоянная вре­мени, определяемая параметрами обмотки якоря синхронной машины при отсутствии трансформаторной связи ее с другими об­мотками.

170.       Постоянная времени апе­риодической составляющей син­хронной машины (постоянная времени апериоди­ческой составляющей) — электромагнитная постоянная времени, определяемая средним арифметическим значением параметров обмотки якоря син­хронной машины по продольной и по­перечной осям ее магнитной системы с учетом реактивного действия других об­моток.

171.       Переходная постоянная времени синхронной машины по продольной оси при короткозамкнутой обмотке якоря — электромагнитная постоянная времени, определяемая параметрами обмотки воз­буждения с учетом реактивного действия обмотки якоря синхронной машины по продольной оси.

172.       Переходная постоянная времени синхронной машины по поперечной оси при короткозамкнутой обмотке якоря — электромагнитная постоянная времени, определяемая параметрами обмотки воз­буждения по поперечной оси, если тако­вая имеется, с учетом реактивного дейст­вия обмотки якоря синхронной машины по поперечной оси.

173.       Переходная постоянная времени синхронной машины по продольной оси при разомкнутой обмотке якоря — электромагнитная постоянная времени, определяемая параметрами обмотки воз­буждения синхронной машины по про­дольной оси.

174.       Переходная постоянная времени синхронной машины по поперечной оси при разомкнутой обмотке якоря — электромагнитная постоянная времени, определяемая параметрами обмотки воз­буждения синхронной машины по попереч­ной оси.

175.       Сверхпереходная постоян­ная времени синхронной машины по продольной оси при короткозамкнутой обмотке якоря — электромагнитная постоянная времени, определяемая параметрами успокоитель­ных контуров по продольной оси с учетом реактивного действия обмотки якоря и об­мотки возбуждения синхронной машины.

176.       Сверхпереходная постоян­ная времени синхронной машины по поперечной оси при короткозамкнутой обмотке якоря — электромагнитная постоянная времени, определяемая параметрами успокоитель­ных контуров по поперечной оси с уче­том реактивного действия обмотки якоря и обмотки возбуждения по поперечной оси синхронной машины.

177.       Сверхпереходная постоян­ная времени синхронной машины по продольной оси при разом­кнутой обмотке якоря — электромагнитная постоянная времени, определяемая параметрами успокоитель­ных контуров по продольной оси с учетом реактивного действия обмотки возбужде­ния синхронной машины.

178.        Сверхпереходная постоян­ная времени синхронной машины по поперечной оси при разомк­нутой обмотке якоря — электромагнитная постоянная времени, определяемая параметрами успокоитель­ных контуров по поперечной оси с учетом реактивного действия обмотки возбужде­ния по поперечной оси синхронной маши­ны, если таковая имеется.

179.        Время разгона вращаю­щегося электродвигателя —
время от момента подачи напряжения на выводы вращающегося электродвига­теля до момента, когда частота враще­ния его достигает 0,95 установившегося значения, соответствующего норме.

180.        Время вхождения в син­хронизм синхронного электродви­гателя — время от момента подачи напряже­ния до момента достижения электро­двигателем устойчивой синхронной час­тоты вращения.

181.        Электромеханическая по­стоянная времени вращающегося электродвигателя -время, в течение которого вращающийся электродвигатель после подачи напряже­ния питания развивает частоту вращения, равную 0,632 установившегося значения, соответствующего норме.

182.       Статическая перегружаемость синхронной машины — отношение максимальной мощности син­хронной машины, развиваемой при плав­ном изменении нагрузки, неизменных воз­буждений и напряжений на выводах об­мотки якоря и синхронной частоты враще­ния, к ее номинальной мощности.

183.    Сопротивление контакта электрической цепи (сопротивление контакта) – электрическое сопротивление, состоящее из сопротивлений контакт-деталей и переходного сопротивления контакта электрической цепи.

184.    Переходное сопротивление контакта электрической цепи (переходное сопротивление контакта) – электрическое сопротивление зоны контактирования, определяемое эффективной площадью контактирования, и равное отношению падения напряжения на контактном переходе к току через этот переход.

185.    Статическая характеристика нагрузки электроэнергетической системы (статическая характеристика нагрузки) – зависимость активной или реактивной нагрузки от напряжения при постоянной частоте или от частоты при постоянном напряжении.

186.    Динамическая характеристика нагрузки электроэнергетической системы (динамическая характеристика нагрузки) – зависимость активной или реактивной нагрузки от времени при определенных изменениях напряжения или частоты.

187.    Регулирующий эффект нагрузки электроэнергетической системы по напряжению (Регулирующий эффект нагрузки по напряжению) – изменение активной или реактивной нагрузки электроэнергетической системы при изменении напряжения, препятствующее данному возмущению.

188.    Регулирующий эффект нагрузки электроэнергетической системы по частоте (Регулирующий эффект нагрузки по частоте) – изменение активной или реактивной нагрузки электроэнергетической системы при изменении частоты, препятствующее данному возмущению.

 

4.4. Резистивные деформационные манометры

Резистивные манометры основаны на изменении активного электро­сопротивления проводников при их механической деформации. Впервые

этот эффект (тензоэффект) был рассмотрен английским физиком В. Томпсоном (лорд Кельвин) в 1856 г. Экспериментальные исследова­ния тензоэффекта для различных металлов и сплавов были впервые про­ведены при давлениях до 300 МПа Лизелом (1903 г.), а затем при дав­лениях до 1300 МПа Бриджменом (1911 г.). Однако широкое внедрение тензоресторной техники в промышленность началось со времен второй мировой войны.

Основная характеристика тензоэффекта — коэффициент относитель­ной тензочувсгвительности, определяемый как отношение изменения со­противления проводника к изменению его длины

* = eR/€h                                                  (4.13)

где ец = AR/R — относительное изменение сопротивления; ег = &1/1 — относительное изменение длины.

Для твердых тел относительное изменение сопротивления зависит как от изменения геометрических размеров, так и от изменения удельно­го сопротивления

к = 1 + 2(i + т,                      (4.14)

где ix — коэффициент Пуассона (для металлов ц — 0,24—0,4); т = = Др/р/А/Д — изменение удельного сопротивления материала, связанное с изменением его физических свойств.

Для металлов (1 + 2д) » т, для полупроводниковых материалов т » (1 + 2д), и для них можно считать, что к = т.

Принципиальное отличие тензометрического метода измерения дав­ления состоит в том, что мерой давления является не перемещение за­данной точки УЧЭ в осевом направлении, а деформации поверхности УЧЭ или поверхности связанного с ним тела. Измерительный преобразо­ватель, который преобразует деформации поверхности твердого тела в изменение его электросопротивления, называется тензорезистором.

Обычно выделяют следующие основные группы тензорезисторов: проволочные, фольговые, тонкопленочные и полупроводниковые. При этом находят применение два основных вида преобразования давле­ния:

давление, воспринимаемое УЧЭ, вызывает деформацию его поверх­ности (растягивающую или сжимающую), которая преобразуется в из­менение электросопротивления тензорезистора;

давление, воспринимаемое УЧЭ, преобразуется в сосредоточенную силу, которая деформирует упругое твердое тело с жестко связанным с ним тензорезистором; иногда производится промежуточное преобразо­вание силы в момент сил.

Аппаратура, содержащая промежуточные преобразователи различ­ного назначения, а также источники питания, усилитель выходного сиг­нала и вторичные приборы для индикации и регистрации давления, тре­бует существенно больших затрат на изготовление, чем УЧЭ с вмонтиро­ванными в него тензорезйсторами, которые, как правило, включаются в мостовую схему и составляют вместе с УЧЭ единый блок (датчик).

Тензорезисторы о ычно включаются во все четыре плеча мостовой схемы, причем для повышения чувствительности одна пара тензорезис-торов работает на растяжение, а другая на сжатие. Иногда два тензорезис-тора располагаются на участках УЧЭ, подверженных деформации, а два других „холостых" (не подвергаются растяжению или сжатию) предна­значены для температурной компенсации мостовой схемы. Для датчиков высокой точности тре&уются также уравновешивающие и компенсацион­ные элементы для корректировки нуля и диапазона измерений и пр.

Первыми были разработаны проволочные тензопреобразователи (проволочные тензорезистивные манометры), предназначенные для из­мерения высоких давлений, которые в отличие от указанных выше ме­тодов преобразования основаны на всестороннем сжатии проводника непосредственно давлением окружающей среды без применения УЧЭ, т. е. функции УЧЭ и тензорезистора совмещены в одном элементе.

В качестве материала проволочного сопротивления до настоящего времени применяется манганин (сплав меди, марганца и никеля), эф­фективность которого при создании тензоэффекта была выявлена ис­следованиями Лизела и Бриджмена еще в начале нашего века.

Манганиновый манометр (рис. 41) содержит катушку сопротивле­ния 6, каркас, которой с помощью двух металлических стержней 1 при­креплен к втулке 3, и корпус 7 с штуцером для подключения измеряе­мого давления. Для уплотнения стержней в их средней части имеются кольцевые утолщения, с двух сторон которых помещены прокладки 4. Предварительное уплотнение производится с помощью гайки 2, а за­тем под действием давления верхние прокладки самоуплотняются. Для электрической изоляции стержней, предназначенных для включения катушки сопротивления в мостовую схему, стержни отделены от метал­лических деталей воздушными зазорами, которые обеспечиваются цент­ровкой стержней посредством изолирующих втулок 5 и уплотнений 4.

Уравнение измерений манганинового манометра имеет вид

p = a(-f-)+n-f)2,                                  (4-15)

к                      к

где Ro — сопротивление проводника при отсутствии давления; AR — изменение сопротивления при давлении р; а и |3 — коэффициенты, зави­сящие от свойств материала проводника и, в меньшей степени, от техно­логии изготовления.

Наиболее часто для изготовления точных манганиновых манометров применяется сплав, состоящий из 84 % меди, 12 % марганца и 4 % нике­ля. Удельное сопротивление манганина такого состава составляет (4,2-4,8) • 10~7 Ом/м, что в 25 раз превышает удельное сопротивление меди. Это имеет существенное значение в технике высоких давлений, так как непосредственно влияет на размеры катушки сопротивления.

Значения коэффициентов уравнения измерений (4.15) колеблются в пределах: а= (40,3-41,2)- 109 Па; 0 = (11,5-15,0)- 109 Па. Доля второго члена уравнения (4.15), определяющего нелинейность, составля­ет от 0,01 % при р = 100 МПа до 0,8 % при р = 1 ГПа (10000 кгс/см2),

4.4. Резистивные деформационные манометры

резко возрастая при дальней­шем увеличении давления. При точных измерениях с по­грешностью менее 0,5—1 % требуется индивидуальная градуировка манганиновых манометров.

Диапазон давлений, изме­ряемых манганиновыми мано­метрами, составляет от 100 МПа (1000 кгс/см2) до 4 ГПа (40000 кгс/см2), погреш­ность измерений от 0,4 до 2,5 % (рабочие средства изме­рений) и от 0,2 до 0,6 % (об­разцовые средства измере­ний) . Долговременная ста­бильность (5—10 лет) и вос­производимость показаний хорошо изготовленных манга­ниновых манометров состав­ляют ±0,2 % каждая. Влияние температуры определяется из­менением электросопротивле­ния, которое в среднем со­ставляет 0,01 % на 1°С.

Рис. 41. Манганиновый манометр

Манометры сопротивле­ния практически не примени­мы при давлениях менее 50 МПа из-за относительно низ­кого тензоэффекта при все­стороннем сжатии проводни­ка. Например, прир = 50 МПа изменение сопротивления манганина составляет AR/R0 = — 0,125 %, что соизмеримо с

влиянием изменения температуры на ±5°С (0,05 %). Поэтому при изме­рении малых и средних давлений производится предварительное преоб­разование давления в деформацию УЧЭ, которая создает в материале тен-зорезистора требуемые растягивающие или сжимающие усилия. При этом уменьшение давления компенсируется увеличением геометричес­ких размеров УЧЭ и уменьшением толщины его стенок.

На этом принципе основано подавляющее большинство проволоч­ных тензореэистивных манометров. Находят применение как наклеи­ваемые на поверхность УЧЭ проволочные тензорезисторы, так и „сво­бодные" тензорезистивные преобразователи, в которых деформации подвергаются ненаклеенные проволочные нити. Различаются также мано-

метры с тензорезисторами, закрепленными непосредственно на поверх­ности УЧЭ и закрепленными на балочке, на которую действует развива­емая" под действием на УЧЭ давления сила. Примеры некоторых конст­руктивных решений приведены на рис. 42.

/    2

4.4. Резистивные деформационные манометры

Рис. 42. Проволочные тензорезисторные манометры

Одна из таких конструктивных схем положена в основу тензомоду-ля преобразователя избыточного давления типа Темп-21ДИ-М1 на основе литых микропроводов. Тензомодуль (рис. 42, а) содержит упругий чув­ствительный элемент 4, выполненный в форме пустотелого цилиндра с перегородкой в средней части, который на торцах имеет фланцы 2 и 6. Через фланец 1 внутрь УЧЭ подается измеряемое давление, фланец 2 име­ет отверстие для сообщения второй половины УЧЭ с атмосферным давле­нием. На наружной поверхности цилиндра размещены четыре тензорезис-тора. два из которых, воспринимающие деформацию цилиндра под дей­ствием давления, составляют активные плечи моста сопротивлений, а два других 5 — пассивные плечи, предназначенные для температурной ком­пенсации нуля мостовой схемы. Тензорезисторы укреплены на цилиндре с помощью специального цемента и защищены от воздействия окружаю­щей среды герметичным кожухом 3.

Мостовая схема выдает электрический сигнал постоянного тока, ко­торый преобразуется в пропорциональное напряжение переменного тока и после усиления вновь преобразуется в токовый выходной сигнал 0—5, 0—20 или 4—20 мА. Электронный блок содержит также масштабный де­литель, который позволяет ступенчато изменять коэффициент усиления выходного сигнала мостовой схемы. Благодаря этому один и тот же УЧЭ

охватывает четыре диапазона давлений. Выпускаются три модели преоб­разователя, которые обеспечивают верхние пределы измерений, МПа:

2160..-. 1,0; 1,6; 2,5; 4,0

2170 6   ; 10 ; 16 ; 25

2180 …. 40 ; 60 ; 100;160

Пределы основной допускаемой погрешности составляют 0,25; 0,5 и 1,0 от верхнего предела измерений.

Преобразователь предназначен для работы при температуре окружа­ющего воздуха от -30 до +80°С. Габаритные размеры 130X185X45 мм, масса не более 1 кг.

Для измерения давлений менее 1 МПа (10 кгс/см2) может быть ис­пользован тензопреобразователь балочного типа. Преобразователь (рис. 42, б) содержит закрепленную на фланце 1 мембрану 2 с жестким цент­ром, которая преобразует давление в силу, передаваемую благодаря стержню 3 на упругую балку 4. Закрепленные на балке тензорезисторы 5, один из которых испытывает растягивающие напряжения, а другой — сжимающие напряжения, включены в мостовую схему. Возможности данной схемы при понижении диапазона измерений давления в принципе неограничены.

Общий недостаток конструкций с наклеиваемыми проволочными тензорезисторами — нестабильность закрепления последних на деформи­руемой поверхности, особенно при воздействии повышенных темпера­тур. С этой точки зрения предпочтительнее „свободные" тензорезистив-ные преобразователи, которые почти полностью совмещают функции упругого элемента и тензорезистора, обеспечивая высокую собственную частоту и хорошую стабильность нуля, так как жесткость других упру­гих элементов (мембраны, сильфона и пр.) в этом случае выбирается су­щественно меньшей.

Преобразователь указанного типа (рис. 42, в) содержит защемлен­ную по краям мембрану 3, на которой закреплены стержни 1 и 4. На кон­цах стержней смонтированы „свободные" проволочные тензорезисторы 2 и 5. Под действием разности давлений мембрана деформируется, бла­годаря чему стержни поворачиваются з разные стороны, увеличивая на­тяжение одного из тензорезисторов и уменьшая натяжение другого. На выходе мостовой схемы, активными плечами которой являются оба тен­зорезистора, возникает выходной электрический сигнал, преобразуемый далее обычными способами.

Если стержни закреплены на расстоянии г = R/y/T от центра мем­браны, то угол их поворота

±^.-_£1.р,                                  (4.16)

где R — радиус мембраны; h — толщина мембраны; Е — модуль упругос­ти материала; ц — коэффициент Пуассона.

При жесткости нитей, существенно превышающей жесткость мембра­ны, поворот стержней практически не происходит вследствие компенса­ции момента со стороны мембраны моментом сил натяжения нитей.

Следует отметить, что все проволочные тензорезисторы имеют отно­сительно низкие выходные сигналы (по сравнению с индуктивными и емкостными преобразователями).

Одним из существенных недостатков проволочных тензорезисторов является небольшая теплоотдача материала проволоки, так как площадь теплоотдачи составляет половину цилиндрической поверхности проволо­ки. Поэтому возможности миниатюризации ограничиваются допускае­мым уменьшением диаметра проволоки, который обычно составляет не менее 20—30 мкм. Гораздо большие возможности предоставляет техника изготовления тензорезисторов из металлической фольги, которая к нас­тоящему времени достаточно хорошо испытана и отработана. Типичная конструкция фольгового тензорезистора (рис. 43, а) состоит из тонкой

4.4. Резистивные деформационные манометры

Рис. 43. Фольговый тензорезистор

металлической фольги 1, выполненной в виде петлеобразной решетки, которая специальным клеем закреплена на подложке 2 из изоляционно­го материала. К расширенным концам решетки припаиваются проволоч-

ные токосъемники 3, а сверху на решетку наносится изоляционное по­крытие 4 для защиты от воздействия окружающей среды. Сопротивле­ние резистора определяется базой /, числом последовательно соединен­ных полосок фольги и их поперечным сечением. В качестве материала фольги обычно применяют константан, подложки — бакелитовую или эпоксидную смолу. Для изготовления фольговых тензорезисторов и их закрепления на поверхности УЧЭ используются в зависимости от усло­вий работы (температуры, влажности, агрессивности среды) различные клеящие составы, затвердевающие в горячем состоянии.

Толщина h фольги обычно составляет 3—10 мкм, а ширина Ъ = 0,1 мм и более. Поэтому по сравнению с проволочными тензорезисторами во много раз увеличивается теплоотдача, а, следовательно, уменьшается на­грев тензорезистора при прочих равных условиях. Коэффициент тензо-чувствительности составляет к — 2,1—2,3 (для константана). Размеры тензорезисторов могут быть доведены до / = 2—3 мм.

Тензорезисторы закрепляются непосредственно на поверхности УЧЭ или на упругую балочку, связанную с УЧЭ жестким стержнем, и включа­ются в мостовую схему. Манометры, основанные на указанном принци­пе, позволяют измерять давление с высокой точностью. Так, цифровой манометр „Diptron 2" фирмы „Wallance & Tiernan" (ФРГ) предназначен для измерения давления с погрешностью 0,05 %. Манометр (рис. 43, б) содержит сильфон 1, преобразующий измеряемое давление р в усилие, которое с помощью стержня 2 изгибает упругую балку 4. Пропорцио­нальная давлению деформация воспринимается тензорезисторами 3, включенными в мостовую схему, причем два резистора работают на рас­тяжение, а два других — на сжатие. Усилителем 1 (рис. 43, в) выходной сигнал усиливается и после преобразований поступает на цифровое табло указателя 2. Одновременно происходит преобразование в аналоговый и кодовый выходные сигналы.

Узлы измерительного механизма, усилителя, блока питания и пока­зывающего устройства помещены в общий корпус. Габаритные размеры 120X150X230 мм, масса 4 кг. Манометр изготовляется на диапазоны из­мерений от 0—0,1 бар (0 — 10 кПа) до 0—25 бар (0 — 2,5 МПа) и предна­значен для измерения избыточного давления и разрежения. Погрешность измерений, включая нелинейность и гистерезис, 0,05 % верхнего предела измерений. Влияние изменений температуры в диапазоне 10—40° С не превышает ±0,005 % на 1°С.

Несмотря на ряд очевидных достоинств (высокая точность, хорошая долговременная стабильность, высокая собственная частота, примени­мость для изготовления небольших серий) фольговые тензорезисторы имеют также и недостатки: относительную дороговизну в связи с жест­кими допусками на изготовление; невысокую тензочувствительность, свойственную всем металлическим тензорезисторам — 2), что требует соответствующего усиления; ограниченные диапазон температур и воз­можности миниатюризации.

Тонкопленочные тензорезисторы. Дальнейшие возможности разви­тия тензорезистивных манометров предоставила тонкопленочная техни-

ка, получившая в последнее время распространение в различных облас­тях микроэлектроники, в которой в отличие от фольговой техники пе­ред нанесением на подложку проводящего материала тензорезисгоров на поверхность УЧЭ наносится изоляционный слой толщиной в несколько мкм, затем низкоомные проводники монтажной схемы и в последнюю очередь сам тензорезистор. При этом применяются методы напыления в вакууме, плазменной активации паров требуемых химических веществ и пр., которые позволяют наносить не только металлические пленки, но и поликристаллические материалы с повышенным коэффициентом тензочувствительности {к — 30—50). Все это позволяет существенно уменьшить размеры УЧЭ при одновременном уменьшении диапазона измерений. Однако сложность технологии изготовления требует значи­тельных затрат на оборудование. Поэтому изготовление тонкопленоч­ных тензорезисторов рентабельно только при условии их массового про­изводства.       —

В отличие от металлических тензорезисторов, сопротивление кото­рых изменяется вследствие деформации поперечного сечения, в полупро­водниковых тензорезисторах чувствительным к натяжению является удельное сопротивление, которое занимает очень широкий диапазон зна­чений. Если удельное сопротивление проводников находится в диапазо­нах от 10~5
до’10"8 Ом.м, а диэлектриков от 1010 до 1016
Ом.м, то диа­пазон удельных сопротивлений полупроводников простирается от 10"s до 104, т. е. охватывает почти 10 порядков. Помимо этого сопротивле­ние полупроводников существенно зависит от содержания в них приме­сей, подбором которых можно изменять сопротивление в нужном на­правлении. Примеси, которые создают в полупроводнике свободные электроны, называют донорными, а сам полупроводник называют п-типа

(от „негатив" — отрицательный). Примеси, которые захватывают валент­ный электрон и при этом у одного из атомов полупроводника возникает „дырка", называют акцепторными (принимающими), а проводимость про­водника р-типа (от „позитив" — положительный). Количество свобод­ных носителей зарядов (электронов и дырок) определяет проводимость, а, следовательно, и удельное сопротивление полупроводника. При этом чувствительность удельного сопротивления полупроводникового тензо-резистора к его деформации существенно выше, чем изменение сопро­тивления под влиянием изменения поперечного сечения. Поэтому коэф­фициент тензочувствительности (4.14) полупроводникового тензорезис-тора практически равен к = т. Если для металлических тензорезисторов коэффициент тензочувствительности к = 2, то коэффициент тензочувст­вительности кремния к = 125-135 при р-проводимости и к = -(100-

—130) при и-проводимости. Это позволяет существенно упростить аппара­туру для усиления выходного сигнала,

Конструктивное выполнение полупроводниковых тензорезисторов аналогично тонкопленочным тензорезисторам (рис. 43, а). Те же техно­логические приемы применяются и при изготовлении полупроводнико­вых тензорезисторов. При этом используются два основных способа:

полупроводниковый кремниевый тензорезистор наносится на изоли­рующую сапфировую подложку (КНС структура);

полупроводниковый кремниевый тензорезистор с р-проводимостью наносится на кремниевую подложку с n-проводимостью (КНК струк­тура) .

В зависимости от конструктивного исполнения полупроводниковые тензорезистивные преобразователи применяются для измерения абсолют­ного и избыточного давления (разряжения) и разности давлений.

В нашей стране серийно изготовляются полупроводниковые преоб­разователи типа „Сапфир-22", основанные на КНС структуре.

Схема преобразователя „Сапфир-22ДИ", предназначенного для изме­рения избыточного давления, представлена на рис. 44. Мембранный полу-

4.4. Резистивные деформационные манометры

4.4. Резистивные деформационные манометры

Рис. 44. Преобразователь „Сапфир-22ДИ’:  Рис. 45. Преобразователь „Сапфир-22ДА"

проводниковый тензопреобразователь 3 размещен внутри основания 9. Внутренняя полость 4 тензопреобразователя заполнена кремнийоргани-ческой жидкостью и отделена от измеряемой среды металлической гоф­рированной мембраной 6, приваренной по наружному контуру к основа­нию 9. Измеряемое давление подается в камеру фланца 5. Между основа­нием 9 и фланцем 5 помещена уплотняющая прокладка 8. Полость 10 сообщена с окружающей атмосферой.

Измеряемое давление воздействует на мембрану 6 и через жидкость передается на мембрану тензопреобразователя 3, вызывая ее прогиб и соответствующее изменение сопротивления тензорезисторов, соединен­ных в мостовую схему. Электрический сигнал по проводам через герме­тичный вывод 2 поступает в электронный блок 1, который содержит корректоры для плавной подстройки диапазона и нуля выходного сигна­ла. При измерении абсолютного давления полость 10 откачивается и гер­метизируется. Как при измерении избыточного давления, так и абсолют­ного давления в данной конструкции измеряемое давление воздейству­ет через жидкость непосредственно на мембрану тензопреобразователя.

Для измерения абсолютных давлений не более 250 кПа применяется преобразователь „Сапфир-22ДА" (рис. 45). В отличие от предыдущего здесь применен мембранно-рычажный тензопреобразователь 4, который размещен внутри основания 9 и отделен от измеряемой среды металли­ческой гофрированной мембраной 8, а от вакуумированной полости 12 металлической мембраной 14. Обе мембраны по наружному контуру приварены к основанию 9 и соединены между собой центральным што­ком 6, который связан с концом рычага 5 тензопреобразователя с по­мощью упругой тяги 13. Внутренние полости основания также вакууми-рованы. Фланцы 10 nil уплотнены на основании 9 прокладками 3.

Измеряемое абсолютное давление подается в камеру 7. При этом по­следовательно происходят прогиб мембран 8 и 14, изгиб мембраны тен­зопреобразователя 4 и изменение сопротивления тензорезисторов. Элек­трический сигнал от тензопреобразователя передается по проводам че­рез герметичный вывод 2 на электронный блок 1.

Аналогичная конструкция используется для измерения разности дав­лений (рис. 46). В отличие от предыдущей внутренняя полость основа­ния 4 между мембранами 3 заполнена кремнийорганической жидкостью. Воздействие измеряемой разности давлений, большее из которых подает­ся в камеру 2, меньшее — в камеру 5, вызывает прогиб мембран 3, изгиб мембраны тензопреобразователя 1 и изменение сопротивления тензоре­зисторов. Измерительный блок выдерживает без разрушения воздейст­вие односторонней перегрузки избыточным давлением. Это обеспечива­ется тем, что торцевые поверхности основания 4 профилированы одина­ково с поверхностями мембран 3.

Преобразователи „Сапфир-22" имеют унифицированное электронное устройство, преобразующее электрический сигнал тензорезисторного моста в аналоговый стандартный сигнал 0—5 или 0—20 или 4—20 мА по­стоянного тока. Электрическое питание преобразователей осуществляет­ся от источника питания постоянного тока напряжением (36±0,72) В. Преобразователи предназначены для работы при температуре от 5 до 50°С, по требованию заказчика возможно расширение диапазона темпе­ратур от —20 до +80°С. Пределы допускаемой основной погрешности ±0,25 % и ±0,5 %, верхние пределы измерений от 0,25 кПа до 100 МПа.

Зарубежные полупроводниковые преобразователи в основном ис­пользуют тензорезисторы с КНК структурой. Одна из ведущих в этой области фирма „Druck Ltd" (Англия) освоила промышленный выпуск

4.4. Резистивные деформационные манометры

полупроводниковых датчиков в комплекте с вторичными пока­зывающими приборами типа DPJ 220 с цифровым отсчетом. Мано­метр отличается высокой точ­ностью. Суммарная погрешность, вызываемая нелинейностью, гис­терезисом и воспроизводи­мостью показаний, не превышает 0,1 % верхнего предела измере­ний. Долговременная стабиль­ность составляет ±0,02 % за три месяца, температурный коэффи­циент ±0,01 % на 1°С. Диапазо­ны измерений: от 0—7,5 кПа до 0—50 МПа при измерении избы­точного давления; от 0— 17,5кПа до 0—3,5 МПа при измерении разности давлений; от 0—35 кПа до 0—50 МПа при измерении аб­солютного давления.

Рис.   46.  Преобразователь для  измерения разности давлений

Контрольный вопрос № 7

Что определяет тензочувствительность резистивных полу­проводниковых тензодатчиков к давлению — изменение геомет­рических размеров тензорезистора или изменение удельного электрического сопротивления материала тензорезистора?

Если Вы считаете изменение геометрических размеров, то см. с. 108, если — изменение удельного электросопротивления, то см. с. 110.

При этом достигнут хороший уровень миниатюризации. Масса вто­ричного прибора составляет 0,6 кг, габаритные размеры 100X45X200мм. Питание осуществляется от сети переменного тока 220 В, аналоговый то­ковый выходной сигнал 4—20 мА.

Преимуществами тензорезистивных полупроводниковых преобразо­вателей является: высокий коэффициент тензочувствительности; воз­можность миниатюризации чувствительного элемента; непосредственное применение достижений современной микроэлектроники.

К недостаткам полупроводниковых преобразователей относятся: сложность технологии изготовления ЧЭ, что неприемлемо при мелкосе­рийном производстве; хрупкость ЧЭ, что ограничивает их применение в условиях сотрясений, скачков давления; относительно большое влияние

температуры на коэффициент тензочувствительности. Последнее осо ен-но важно для тензорезисторов, основанных на КНК структурах, макси­мальная температура эксплуатации которых ограничена 120°С.

13.6. Тепловые уровнемеры

Тепловые уровнемеры основаны либо на использовании различия температур жидкости и парогазовой смеси над ней (дилатометрические уровнемеры), либо различия их теплопроводностей (терморезисторные уровнемеры и уровнемеры ТЭДС).

Чувствительным элементом дилатометрического уровнемера (рис. 140) является стержень или трубка, омываемые жидкостью и парогазо­вой смесью. В результате теплообмена между чувствительным элемен­том, жидкостью и газом чувствительный элемент приобретает определен­ную температуру, пропорциональную температурам жидкости и газа, а также текущему значению уровня жидкости в сосуде. Следовательно, при постоянстве температур жидкости и газа средняя температура чувст­вительного элемента будет являться мерой текущего значения уровня. О средней температуре чувствительного элемента судят либо по его отно­сительному удлинению, либо по давлению жидкости или газа, заполняю­щим его внутреннюю полость (см. рис. 142).

Дилатометрические уровнемеры применяют при измерении уровня конденсированных жидкостей, т. е. когда температуры жидкости и паро-

газовой смеси над не   относительно стабильны и при этом значительно разнятся между собой.

Несмотря на простоту и надежность дилатометрические уровнемеры вследствие малых диапазонов измерений (не более 0,75 м) и невысокой точности не получили широкого промышленного применения.

/ = const

13.6. Тепловые уровнемеры

У///////////77?

Рис.    140.   Чувствитель­ный элемент дилатомет­рического уровнемера

Рис. 141. Чувствительный эле­мент   тензорезисторных   уров­немеров

Чувствительный элемент тензорезисторных уровнемеров (рис. 141) представляет собой помещенный в сосуд резистор, электрическое сопро­тивление которого определяется его температурой. Для создания гради­ентов температур в жидкой и газовой фазах применяют прямой и кос­венный подогревы резистора. Прямой подогрев осуществляется эа счет тепла, выделяемого при прохождении через резистор электрического то­ка, косвенный — с помощью монтируемого в датчике подогревательно­го элемента.

Вследствие различной интенсивности теплопередачи от нагретого те­ла к жидкости и газу, участки резистора, находящиеся в соприкоснове­нии с различными фазами, будут иметь различную температуру и, следо­вательно, различное электрическое сопротивление. По сопротивлению ре­зистора в данном случае можно судить о текущем значении уровня, т. е. выходным параметром датчика является сопротивление резистора или, что при условии постоянства силы тока / = const, эквивалентно падению напряжения Un на резисторе.

Обычно чувствительный элемент тензорезисторных уровнемеров представляет собой вертикально натянутую тонкую проволоку с боль­шим погонным электрическим сопротивлением, что обеспечивает его вы­сокую чувствительность.

Функция преобразования датчика линейна и описывается уравнением

 -?i) h.                  (13.13)

где AR = Rj, — Ro — разность сопротивлений резистора при текущем (/?„) и нулевом (Ro) уровнях жидкости, г0 — погонное сопротивление

резистора при нормальной температуре (?0), «г — температурный коэф­фициент сопротивления материала резистора, t2, ti — температуры по­груженного в жидкость и „сухого" участков резистора.

Как следует из формулы (13.13), основными источниками дополни­тельных погрешностей терморезисторных уровнемеров являются непо­стоянство коэффициента щ и удельного сопротивления г0. Стабильность коэффициента щ обеспечивается соответствующей обработкой материала резистора, предотвращающей его старение в процессе эксплуатации. Для того, чтобы исключить разрушение поверхности резистора, на нее нано­сят специальное защитное покрытие. В какой-то мере это стабилизирует величину г0. Но наибольшее влияние на г0 оказывают изменения At0 тем­пературы окружающей среды t0. Эти изменения обусловливают „плава­ние" нуля прибора и, как следствие, приводят к дополнительной погреш­ности

Для уменьшения этой погрешности применяют различные компенса­ционные схемы с дополнительными резисторами.

В настоящее время в качестве датчиков терморезисторных уровне­меров широко используют полупроводниковые резисторы (1ГГР), пре­имущество которых заключается в большом температурном коэффици­енте сопротивления и в высоком электрическом сопротивлении, что обеспечивает высокую чувствительность датчиков. Практически все се­рийно выпускаемые терморезисторные уровнемеры (типов KMT, MMT и др.) имеют полупроводниковые датчики. Единственный (но в ряде слу­чаев немаловажный) недостаток ПТР — нелинейность их выходной ха­рактеристики.

Специфической областью применения терморезисторных уровнеме­ров является криогеника (измерение уровня жидких газов). При этом все большее распространение получают резисторы, изготовленные из сверхпроводящих материалов. Вследствие эффекта сверхпроводимости погруженная часть резистора имеет нулевое сопротивление и выходной сигнал зависит лишь от уровня сжиженного (при температуре меньшей 20 К) газа и температуры „сухой"  (непогруженной) части резистора.