Архив метки: порода

 ШАРОШЕЧНЫЕ ДОЛОТА

Простейшая конструкция корпусного трехшарошечного долота (в от­личие от секционного и бескорпусного) с центральной промывкой показа­на на рис. 3.1, а (без сопел) и на рис. 3.1, б (с соплами).

Долото состоит из следующих основных узлов: литого корпуса 1, лап 2, узла опор, включающего цапфу 3 и подшипники 4—6, шарошек 7 и очи­щающего или промывочного узла. В состав последнего могут входить сопла 8 и 9, формирующие высоконапорный поток бурового раствора, а также каналы 10 (рис. 3.1, б), просверленные в корпусе 1. Верхняя часть 11 кор­пуса обычно называется присоединительной головкой, так как она служит для присоединения к переводнику или Читать далее

ВЛИЯНИЕ РЕЖИМА ПРОМЫВКИ НА СКОРОСТЬ БУРЕНИЯ

Одна из главных функций циркулирующего бурового раствора — очи­стка забоя и ствола скважины от обломков породы. От эффективности вы­полнения этой функции в значительной мере зависит скорость проходки скважины. Однако в ряде случаев гораздо больше на скорость бурения влияет другой фактор циркуляции — гидромониторный эффект размыва забоя: с увеличением скорости истечения бурового раствора из насадок долота скорость бурения увеличивается.

Скорость и режим циркуляции бурового раствора определяют интен­сивность размыва забоя потоком, значение дифференциального давления на забое, качество очистки забоя и ствола от разрушенной породы, степень размыва скважины, энергетические затраты на циркуляцию, т.е. то, что прямо влияет на скорость бурения скважин.

С повышением производительности промывки будет интенсифициро­ваться размыв породы на забое, улучшаться удаление шлама с забоя, при этом скорость бурения должна увеличиваться. Однако возникают и отри­цательные моменты: повышается дифференциальное давление на забое за счет увеличения потерь напора в кольцевом пространстве и давления па­дающей на забой струи бурового раствора, интенсифицируется процесс размыва стенок ствола скважины восходящим потоком, растут энергетиче­ские затраты на циркуляцию, могут возникнуть поглощения бурового рас­твора.

Таким образом, при выборе гидравлической программы промывки скважины для каждого конкретного случая должно быть принято компро­миссное решение, позволяющее достичь высоких скоростей бурения при минимальных затратах на процесс бурения. При этом скорость и направ­ление истечения бурового раствора из насадок долота, режим циркуляции под долотом в кольцевом пространстве скважины, дифференциальное гид­родинамическое давление на забое — основные показатели промывки, влияющие на эффективность процесса бурения.

Все показатели промывки определяются прежде всего значением по­дачи буровых насосов и настолько тесно взаимосвязаны, что зачастую их роли трудно разделить.

Производительность циркуляции бурового раствора — комплексный показатель промывки скважин. С ростом этого значения улучшается очи­стка забоя, а следовательно, повышается эффективность работы долота. В то же время увеличиваются потери давления в кольцевом пространстве и растет гидродинамическое давление на забое, создаются неблагоприятные условия для отхода сколотой долотом частицы от забоя, КПД долота сни­жается, вследствие чего уменьшаются механическая скорость проходки и проходка на долото.

B.C.  Федоровым установлено, что существует определенный предел

технологически необходимого расхода промывочной жидкости, дальнейшее увеличение которого нерационально. Этот предел диктуется, в первую оче­редь, необходимостью обеспечения эффективной очистки забоя от шлама. Его находят опытным путем.

При изучении влияния плотности бурового раствора на показатели ра­боты долота установлено, что в разных условиях бурения оно количествен­но разное и зависит также от глубины скважины, типа пород, порового давления и т.д. Лучше всего проходка на долото и механическая скорость проходки коррелируются с дифференциальным статическим давлением (с разностью между гидростатическим и внутрипоровым давлениями). Чем меньше эта разность, тем эффективней порода разрушается долотом. Оче­видно, дифференциальное давление на забое является комплексным пара­метром, который значительно влияет на характер взаимодействия долота с породой на забое.

С увеличением производительности циркуляции бурового раствора растут гидравлические потери в кольцевом пространстве скважины и в связи с этим повышается гидродинамическое давление на забой. Особенно это заметно при переходе от ламинарного режима течения к турбулентно­му. Потери давления в кольцевом пространстве скважины могут при этом измениться на единицы и даже десятки атмосфер. Эти значения иногда малы по сравнению с гидростатическим давлением столба бурового рас­твора, однако и они могут оказать решающее влияние, особенно тогда, ко­гда гидростатическое и пластовое (внутрипоровое) давления близки по зна­чению, что характерно для современной технологии бурения скважин.

Таким образом, отрицательным последствием интенсификации про­мывки скважины может стать увеличение дифференциального давления на забое скважины и, как следствие, ухудшение условий разрушения породы на забое скважины.

Один из основных факторов, влияющих на эффективность работы по-родоразрушающего инструмента на забое скважины, — качество очистки забоя от обломков породы циркулирующим буровым раствором (под каче­ством очистки забоя будем понимать скорость смыва и количество смываемых частиц шлама. Как правило, бурение (особенно турбинное) осуществляется в условиях несовершенной очистки забоя скважины. Из-за зашламленности забоя зубья породоразрушающего инструмента не имеют непосредственного контакта с поверхностью разрушаемой породы; осевая нагрузка со стороны долота воспринимается не только забоем, но и шламо­вой подушкой. Эффективность внедрения зуба долота в забой скважины существенно ухудшается, скорость проходки уменьшается.

Выполненные в Уфимском нефтяном институте исследования показа­ли, что даже тонкий слой шлама на поверхности мрамора на 30 — 40 % снижает передаваемое на мрамор усилие со стороны вдавливаемого пуансона (зуба).

Лабораторными исследованиями, выполненными фирмой «Эссо Про-дакшн» с помощью микродолот, установлено, что механическая скорость проходки наилучшим образом коррелируется с функцией числа Рейнольд-са. Последующие промысловые исследования, выполненные фирмой «Им-периэл Ойл» в Канаде, подтвердили характер этой зависимости.

Считается, что причиной тесной корреляции между механической скоростью проходки и числом Рейнольдса потока бурового раствора под долотом служит то, что число Рейнольдса является показателем толщины

пограничного слоя бурового раствора у забоя. А сам пограничный слой за­трудняет смыв обломков породы с забоя.

При Re = 100+1000 характерна ситуация, когда обломки породы уда­ляются вихрями, которые образуют движущиеся зубья долота. При этом пограничный слой настолько велик, что при неподвижном долоте обломки породы с забоя потоком бурового раствора не смываются. В этом случае механическая скорость проходки не зависит от числа Рейнольдса.

По мере увеличения числа Рейнольдса от 103 до 105
вихревые потоки начинают достигать забоя. В результате уменьшения толщины погранично­го слоя качество очистки забоя от обломков породы улучшается, и, как следствие, увеличивается механическая скорость проходки. В этом диапа­зоне чисел Рейнольдса темп увеличения механической скорости проходки наибольший.

При Re = 105-И0б интенсивность роста механической скорости про­ходки по-прежнему заметно снижается.

Наконец, при Re > 10б достигается совершенная очистка забоя, и ме­ханическая скорость проходки снова не зависит от числа Рейнольдса. Об­ломки породы с забоя удаляются сразу же после их образования и не по­падают повторно под зубья долота. Поэтому дальнейшее увеличение числа Рейнольдса не способствует заметному увеличению механической скорости проходки за счет улучшения качества очистки забоя. Однако это не исклю­чает дальнейшего повышения эффективности работы долота путем увели­чения осевой нагрузки и частоты его вращения, скорости истечения буро­вого раствора из насадок долота и т.д.

Для практического применения результатов описанных исследований и экспериментов предлагается использовать понятие индекса механической скорости проходки (ИМС), который связывают с числом Рейнольдса сле­дующими эмпирическими зависимостями: при Re < 1900 ИМС = 0,04; при 1900 ≤ Re ≤ 5104
ÈÌÑ = 0,001 Re0,45; ïðè 5-Ю4 ≤ Re ≤ 5105 ÈÌÑ = = 0,01 Re0,27; ïðè Re > 5105 ÈÌÑ = 0,32.

Индекс механической скорости проходки отражает лишь влияние свойств бурового раствора и режима циркуляции в поддолотной зоне на качество очистки забоя от выбуренной породы, но он не учитывает эффект размыва забоя гидромониторной струей. Для перехода через этот показа­тель ИМС к абсолютному значению механической скорости проходки не­обходимо знать для данных конкретных условий значение механической скорости и соответствующее ему значение ИМС:

^(ИМС)Х,

(ИМС)А

где Vmx и у„д — соответственно искомая и известная механическая скорость проходки; (ИМС)Х, (ИМС)А — индексы механической скорости проходки соответственно для гж и у„д.

Расчеты показывают, что при прочих равных условиях ИМС выше при меньшем числе насадок на долоте. Это подтверждено результатами промы­словых экспериментов: закупоривали в период долбления одну-две насадки долота, и при этом механическая скорость проходки никогда не уменьша­лась, а часто, наоборот, увеличивалась.

Таким образом, режим течения бурового раствора под долотом может существенно повлиять на показатели работы долота, так как служит опре­деляющим фактором в степени очистки забоя от шлама.

Из отечественной и зарубежной практики бурения скважин известно, что по мере увеличения скорости истечения бурового раствора из отвер­стий долота разрушение забоя долотом интенсифицируется. Это обуслов­лено, с одной стороны, увеличением количества подаваемой к забою про­мывочной жидкости, а с другой — увеличением кинетической энергии струи, бомбардирующей поверхности забоя. Механическая скорость про­ходки тесно коррелируется с гидравлической мощностью, срабатываемой на долоте, и со скоростью струи бурового раствора в насадках долота: с увеличением этих параметров механическая скорость проходки увеличива­ется.

Промыслово-экспериментальные работы (ВНИИБТ) при бурении ро­торным способом позволили установить, что с увеличением скорости исте­чения струи из насадок гидромониторных долот от 56 до 111 — 127 м/с при практически неизменной производительности циркуляции бурового рас­твора достигалось увеличение механической скорости проходки почти в 2 раза. Установлено, что с увеличением перепада давления на насадках до­лота от 2,0 до 10,5 МПа при производительности циркуляции 20 — 26 л/с механическая скорость проходки возрастала в 2 — 3 раза. Причем наиболее интенсивный рост механической скорости проходки отмечался в диапазо­не перепадов давлений на насадках 3,0 — 8,0 МПа. При перепаде на насад­ках более 9,0 МПа зависимость механической скорости проходки от скоро­сти истечения бурового раствора из насадок долота заметно ослабевала.

На основании выполненных работ в Ставрополье сделаны практически важные выводы о роли скорости истечения струи из насадок гидромони­торных долот в процессе разрушения пород на забое: при увеличении ско­рости истечения от 40 —70 до 100—110 м/с при бурении в мягких породах можно повысить механическую скорость проходки на 50—100 % и рейсо­вую скорость бурения — на 10 — 60 %; в породах средней твердости в этом случае можно достичь увеличения механической скорости проходки на 30-80%.

На эффективность размыва породы гидромониторной струей значи­тельно влияет гидростатическое давление: с увеличением его эффектив­ность размыва забоя струей снижается. Но если с технологической точки зрения положительная роль высокоскоростной струи в разрушении породы долотом очевидна, то целесообразность применения гидромониторных до­лот при бурении в разных геологических условиях определяется прежде всего прочностными характеристиками разбуриваемых пород.

Экспериментальным путем установлено (Б.В. Байдюк, Р.В. Винярский), что при действии гидромониторной струи на забой скважины могут на­блюдаться три частных эффекта, в совокупности определяющие роль струи в разрушении забоя.

Первый — эффект смыва с забоя сколотых частиц породы (шламовой подушки). Как было указано выше, он определяется не столько силой удара струи о забой, сколько режимом течения промывочной жидкости в поддо-лотной зоне. Второй заключается в выемке недоразрушенной породы и в разрушении перемычек между лунками, образовавшимися под зубьями до­лота. Третий заключается в непосредственном разрушении струей мате­ринской породы.

Согласно исследованиям Н.А. Колесникова, А.К. Рахимова и других выявляется четвертый эффект воздействия гидромониторной струи. С уве­личением скорости взаимодействия струи с забоем проницаемых горных

пород возрастает интенсивность смыва глинистой корки, что обусловливает рост давления на глубине разрушения и снижает напряжения в скелете породы. В итоге облегчаются условия и эффективность разрушения горных пород.

Частные гидромониторные эффекты зависят от соответствующего со­четания твердости и проницаемости породы. При этом суммарный гидро­мониторный эффект для одной и той же породы не является монотонной зависимостью от удельного давления струи на забой, а представляет собой сменяющие друг друга участки усиления и ослабления эффекта, а значения удельных давлений, соответствующие этим участкам, зависят от твердости и сплошности породы.

Итак, совершенствование гидравлической программы промывки сква­жин — важный резерв повышения скоростей бурения, особенно в мягких и средних породах, при использовании гидромониторных долот.

После установления влияния различных показателей технологического процесса промывки на скорости бурения скважин появляется возможность сформулировать основные требования к буровым растворам, которые вы­текают из необходимости обеспечения в процессе бурения минимального дифференциального давления на забое, минимальной толщины фильтраци-онно-шламовой подушки на забое, совершенной очистки забоя от обломков разрушенной долотом породы, максимальной силы удара о забой струи бу­рового раствора, вытекающего из насадок долота.

С позиций достижения наилучших показателей работы долот и повы­шения скоростей бурения скважин к буровым растворам можно предъя­вить следующие основные требования:

1) жидкая основа буровых растворов должна быть маловязкой и иметь
низкое значение поверхностного натяжения на границе с горными поро­
дами;

2)     в твердой фазе бурового раствора концентрация глинистых частиц
должна быть минимальной, а средневзвешенное по объему значение плот­
ности твердой фазы — максимальным;

3)     буровые растворы должны быть недиспергирующими под влиянием
изменяющихся  термодинамических условий  в  скважинах.   Они должны
иметь стабильные показатели технологических свойств;

4)     буровые растворы должны быть химически нейтральными по отно­
шению к разбуриваемым породам, не вызывать их диспергирования и на­
бухания;

5)     буровые растворы не должны быть многокомпонентными система­
ми,  а используемые для регулирования их свойств химические реаген­
ты, наполнители и добавки должны обеспечивать направленное измене­
ние каждого технологического показателя при неизменных других показа­
телях;

6)     желательно, чтобы буровые растворы в своем составе имели не ме­
нее 10 % смазывающих добавок, а также содержали газообразную фазу.

Естественно, эти общие требования не являются догмой, а их выпол­нение во многом зависит от геолого-технических условий бурения. Однако они позволяют выбрать именно тот раствор, который не только исключит осложнения и аварии в скважине, но и обеспечит высокие скорости ее бу­рения. В каждом конкретном случае необходимо решать комплексную за­дачу о целесообразности применения того или иного раствора с учетом технической вооруженности буровой установки, оперативности снабжения

ее материалами,  квалификации работников,  географического положения скважины и т.д.

Выполнение на практике сформулированных общих требований к бу­ровому раствору необходимо, но недостаточно для выбора бурового рас­твора с целью обеспечить сохранность проницаемости продуктивного го­ризонта. Критерии выбора несколько иные. Безусловно, только реализация наиболее полного комплекса предложенных мероприятий позволит достичь заметного повышения эффективности бурения скважин. Использование лишь некоторых мероприятий вряд ли позволит достичь стабильного тех­нологического и экономического эффекта.

Перспективные направления в развитии способов бурения в мировой практике

В отечественной и зарубежной практике ведутся научно-исследо­вательские и опытно-конструкторские работы в области создания новых методов бурения, технологий, техники.

К ним относятся углубление в горных породах с использованием взрывов, разрушение пород при помощи ультразвука, эрозионное, с помо­щью лазера, вибрации и др. Анализ различных методов свидетельствует о необходимости увеличения подводимой к забою мощности.

Некоторые из названных методов получили развитие и используются, хотя и в незначительном объеме, зачастую на стадии эксперимента.

Гидромеханический метод разрушения горных пород при углублении скважин все чаще используется в экспериментальных и полевых условиях. С.С. Шавловским проведена классификация водяных струй, которые могут применяться при бурении скважин. Основа классификации — развиваемое давление, рабочая длина струй и степень их воздействия на породы раз­личного состава, сцементированности и прочности в зависимости от диа­метра насадки, начального давления струи и расхода воды. Применение водяных струй позволяет в сравнении с механическими способами повы­сить технико-экономические показатели.

На VII Международном симпозиуме (Канада, 1984) были представлены результаты работ по использованию водяных струй в бурении. Его воз­можности связываются с непрерывной, пульсирующей или прерывистой подачей флюида, наличием или отсутствием абразивного материала и тех­нико-технологическими особенностями способа.

Эрозионное бурение обеспечивает скорости углубления в 4 — 20 раз больше, чем при роторном бурении (в аналогичных условиях). Сущность его состоит в том, что к долоту специальной конструкции вместе с буро­вым раствором подается абразивный материал — стальная дробь. Размер гранул 0,42 — 0,48 мм, концентрация в растворе — 6 %. Через насадки доло­та с большой скоростью на забой подается этот раствор с дробью, и забой разрушается. В бурильной колонне последовательно устанавливают два фильтра, предназначенные для отсева и удержания частиц, размер которых не позволяет им пройти через насадки долота.

Один фильтр — над долотом, второй — под ведущей трубой, где мож­но осуществлять очистку. Химическая обработка бурового раствора с дро­бью сложнее, чем обработка обычного раствора, особенно при повышен­ных температурах, так как необходимо удерживать дробь в растворе во взвешенном состоянии и затем генерировать этот абразивный материал.

После предварительной очистки бурового раствора от газа и шлама при помощи гидроциклонов дробь отбирают и сохраняют в смоченном со­стоянии. Раствор пропускают через гидроциклоны тонкой очистки и дега­затор и восстанавливают его утраченные показатели химической обработ­кой. Затем часть бурового раствора смешивают с дробью и подают в сква­жину, на пути смешивая с обычным буровым раствором (в расчетном со­отношении).

Лазеры в бурении. Лазеры — квантовые генераторы оптического диа­пазона — одно из замечательных достижений науки и техники. Они нашли широкое применение во многих областях науки и техники. По зарубежным данным в настоящее время возможна организация производства газовых лазеров непрерывного действия с выходной мощностью 100 кВт и выше. КПД газовых лазеров может достигать 20 — 60 %. Большая мощность лазе­ров при условии получения чрезвычайно высоких плотностей излучения достаточна для расплавления и испарения любых материалов, в том числе горных пород, которые при этом также растрескиваются, шелушатся.

Экспериментально установлена минимальная плотность мощности ла­зерного излучения, достаточного для разрушения пород плавлением: для песчаников, алевролитов и глин она составляет примерно 1,2—1,5 кВт/см2. Плотность мощности эффективного разрушения нефтенасыщенных горных пород из-за термических процессов горения нефти, особенно при поддуве в зону разрушения воздуха или кислорода, ниже и составляет 0,7 — 0,9 êÂò/ñì2.

Подсчитано, что для скважины глубиной 2000 м
и диаметром 20 см
нужно затратить около 30 млн. кВт энергии лазерного излучения. Проводка скважин такой глубины пока не конкурентоспособна в сравнении с тради­ционными механическими методами бурения. Однако имеются теоретиче­ские предпосылки повышения КПД лазеров; при КПД, равном 60 % энерге­тические и стоимостные затраты существенно снизятся и конкурентоспо­собность этого метода повысится. При использовании лазера в случае бурения скважин глубиной 100 — 200 м
стоимость работ относительно неве­лика. Но во всех случаях при лазерном бурении форму сечения можно за-

программировать, а стенка скважины будет формироваться из расплава горной породы и будет представлять собой стеклообразную массу, позво­ляющую повысить коэффициент вытеснения бурового раствора цемент­ным. В некоторых случаях можно, очевидно, обойтись без крепления скважин.

Зарубежные фирмы предлагают несколько конструкций лазеробуров. Основу их составляет мощный лазер, размещенный в герметичном корпу­се, способном выдержать высокое давление. (Температуроустойчивость по­ка не изучалась.) По этим конструкциям излучение лазера передается на забой через светопроводящее волокно. По мере разрушения (плавления) горной породы лазеробур подается вниз; он может быть снабжен установ­ленным в корпусе вибратором. При вдавливании снаряда в расплав породы стенки скважины могут уплотняться.

В Японии начат выпуск углекислотных газовых лазеров, которые при использовании в бурении существенно (до 10 раз) повысят скорость про­ходки.

Сечение скважины при формировании ствола этим методом может иметь произвольную форму. Компьютер по разработанной программе дис­танционно задает режим сканирования лазерного луча, что позволяет за­программировать размер и форму ствола скважины.

Проведение лазеротермических работ возможно в дальнейшем в пер­форационных работах. Лазерная перфорация обеспечит управляемость процесса разрушения обсадной колонны, цементного камня и породы и может обеспечить проникновение каналов на значительную глубину, что, безусловно, повысит степень совершенства вскрытия пласта. Однако оплавление пород, целесообразное при углублении скважины, здесь непри­емлемо, что должно быть учтено при использовании этого метода в даль­нейшем.

В отечественных работах есть предложения о создании лазероплаз-менных установок для термического бурения скважин. Однако транспор­тировка плазмы к забою скважины пока затруднена. В настоящее время проводятся исследования по возможности разработки световодов («свето-водных труб»).

Одним из наиболее интересных методов воздействия на горные поро­ды, обладающим критерием универсальности, является метод их плавления при помощи непосредственного контакта с тугоплавким наконечником — пенетратором. Значительные успехи в создании термопрочных материалов позволили перенести вопрос о плавлении горных пород в область реально­го проектирования. Уже при температурах порядка 1200—1300 °С метод плавления работоспособен в рыхлых грунтах, песках и песчаниках, базаль­тах и других породах кристаллического фундамента. В породах осадочного комплекса проходка глинистых и карбонатных пород требует, по-видимому, более высокой температуры.

Метод бурения плавлением позволяет получить на стенках скважины достаточно толстую ситалловую корку с гладкими внутренними стенками. Метод имеет высокий коэффициент ввода энергии в породу — до 80 — 90 %. При этом может быть, хотя бы принципиально, решена проблема удаления расплава с забоя. Выходя по выводящим каналам или просто обтекая глад­кий пенетратор, расплав, застывая, образует шлам, размерами и формой которого можно управлять. Шлам выносится жидкостью, циркулирующей выше бурового снаряда и охлаждающей его верхнюю часть.

Первые проекты и образцы термобуров появились в 60-х годах, а наи­более активно теория и практика плавления горных пород начали разви­ваться с середины 70-х годов. Эффективность процесса плавления опреде­ляется в основном температурой поверхности пенетратора и физическими свойствами горных пород и мало зависит от их механических и прочност­ных свойств. Это обстоятельство обусловливает определенную универсаль­ность метода плавления в смысле применимости его для проходки различ­ных пород. Температурный интервал плавления этих различных полимине­ральных многокомпонентных систем в основном укладывается в диапазон 1200—1500 °С при атмосферном давлении. В отличие от механического ме­тод разрушения горных пород плавлением с увеличением глубины и тем­пературы залегающих пород повышает свою эффективность.

Как уже говорилось, параллельно с проходкой осуществляются креп­ление и изоляция стенок скважины в результате создания непроницаемого стекловидного кольцевого слоя. Пока не ясно, будет ли происходить износ поверхностного слоя пенетратора, каковы его механизм и интенсивность. Не исключено, однако, что бурение плавлением, хотя и с небольшой ско­ростью, может проводиться непрерывно в пределах интервала, определяе­мого конструкцией скважины. Сама же эта конструкция в силу непрерыв­ного крепления стенок может быть значительно упрощена, даже в слож­ных геологических условиях.

Очевидно, что можно себе представить технологические процедуры, связанные только с креплением и изоляцией стенок последовательно с проходкой ствола способом обычного механического бурения. Эти проце­дуры могут относиться только к интервалам, представляющим опасность в связи с возможностью возникновения различных осложнений.

С точки зрения технической реализации следует предусмотреть токо-провод к нагнетательным элементам пенетратора аналогично используемо­му при электробурении.

ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ РАЗРУШЕНИЯ ГОРНЫХ ПОРОД

Горные породы разрушаются вследствие отрыва (от нормальных на­пряжений) или сдвига, скалывания, среза (от касательных напряжений). При сжатии порода разрушается преимущественно на скалывание, при растяжении — на отрыв. Разрушение горных пород — процесс сложный, и разрушения на скалывание и отрыв сопровождают друг друга.

Процесс разрушения требует времени и происходит постепенно, но с различной скоростью. Разрушение обычно проходит по контактным по­верхностям отдельных минеральных зерен. Продолжительность разруше­ния для одной и той же породы при прочих равных условиях определяется нагрузкой, температурой, активностью среды, напряженным состоянием и ò.ä.

При бурении скважин разрушение горных пород долотами различного типа может быть поверхностным и объемным. Первый вид разрушения обычно неэффективен — он сводится к дроблению, истиранию, выламыва­нию из массива и проталкиванию в направлении движения инструмента частиц породы. Не вдаваясь в более подробное рассмотрение процесса, связанного с возникновением своеобразного клина из выломанных и пере­двигаемых частиц, создающих распор и способствующих разрушению по­роды, а также механизма их истирания, остановимся на объемном разру­шении горных пород.

Очевидно, разбуривание породы долотом с известным приближением можно рассматривать как процесс вдавливания в породу наконечника (штампа) с плоским и криволинейным основаниями.

Переход от меньшей степени нагрузки на штамп к большей изменяет скорость деформации. При этом различаются три фазы напряженного со­стояния породы под штампом: уплотнение (затухание деформации), пре­дельное равновесие (разрывы и сдвиги) и разрушение.

В первой фазе скорость деформации уменьшается до нуля; в скальных породах при этом деформации являются упругими; в глинистых пластич­ных породах первая фаза — это фаза уплотнения. При разрушении горных пород первая фаза характеризуется поверхностным разрушением.

Во второй фазе скорость деформации не затухает, и при некоторой нагрузке деформация ползучести становится постоянной. Внешним прояв­лением второй фазы деформации, по B.C. Федорову, являются появление скалывания по контуру давления в хрупких породах (появление клинооб­разного углубления) или пластические деформации у пластических пород. При всестороннем сжатии (под штампом сферической формы) порода ха­рактеризуется физико-механической неоднородностью. Любой дефект — вероятный очаг концентрации перенапряжений, вызывающий рост тре­щин.

При увеличении напряжения и росте сети трещин в породе возникают поверхности следующих друг за другом сдвигов, характеризующих дефор­мации. Происходит объемное разрушение породы, причем в реальных гор­ных породах, характеризующихся наличием дефектов, процесс разрушения идет и при нагрузках более низких, чем критические, но медленно. Дли­тельность второй фазы определяется нагрузкой и условиями, в которых происходит процесс разрушения (температура, активность и т.д.).

Третья фаза, по B.C. Федорову, — это фаза прогрессивного роста де­формаций, фаза объемного разрушения. Для скальных пород она длится доли секунды.

Три фазы разрушения составляют полный цикл разрушения горной породы. Ярко выраженный скачкообразный характер наблюдается у хруп­ких прочных пород. У хрупких, но менее прочных пород цикличность по­вторяется, но скачкообразный характер не столь ярко выражен. Мало­прочным породам свойствен еще более плавный характер разрушения. При разрушении пластических глин скачкообразности вообще не наблюдается.

При ударном воздействии горные породы могут разрушаться при на­пряжениях меньше критических, соответствующих пределу прочности. При некотором значении силы порода разрушается после первого удара. Уменьшение силы требует увеличения числа ударов по одной и той же точке. Ниже некоторого значения силы разрушения породы не произойдет при любом числе ударов.

Разрушение породы при циклических напряжениях обусловливается ее усталостью. Число циклов нагружения при напряжениях, близких к пределу усталости, необходимое для разрушения таких пород, как мрамор, известняк, доломит, кварцит, составляет 50—110. Отношение предела уста­лости к прочности для этих пород в зависимости от пластичности колеб­лется в пределах от 1/21 до 1/29.

Установлено, что в процессе вдавливания наконечников разрушение породы наступает при их погружении на 0,10 — 0,25 мм, а продолжитель­ность цикла разрушения породы составляет около 0,002 с. Таким образом, скальные породы разрушаются без внедрения в них зубцов шарошек. При большей продолжительности контакта зубцов с породой происходит их по­гружение, но не в материнскую породу, а в продукты ее разрушения. Меньшей, но продолжительно действующей силой можно достигнуть боль­шего разрушительного эффекта, чем большей силой, но действующей мгновенно. Следовательно, в реальных условиях при бурении с увеличени­ем частоты вращения долота необходимо увеличивать осевую нагрузку. На эффект разрушения горных пород частота вращения долота оказывает двоякое влияние: эффективность разрушения возрастает, но вместе с тем снижается продолжительность контакта зубцов шарошки с породой, что снижает эффективность разрушения.

При поверхностном разрушении механическая скорость проходки увеличивается пропорционально росту частоты вращения.

Порода разрушается и при действии на нее струи жидкости, которая истекает из отверстий долота, причем следует выполнять следующие усло­вия: поток жидкости должен оказывать на забой давление р„ скорость пе­ремещения струи v относительно плоскости забоя не должна превышать некоторой величины, конкретное значение которой зависит от р,- и прочно­сти породы RC7R.

Между этими величинами установлена эмпирическая зависимость р,- > > к$11сж, что справедливо при v = 0,5 м/с (здесь &0 — опытный коэффици­åíò, ðàâíûé 0,25-0,35).

Для конкретных условий бурения максимальная механическая ско­рость проходки будет только при определенном сочетании частоты враще­ния, осевой нагрузки на долото и расхода жидкости. Этот расход — опти­мальный. Рекомендуется подбирать соответствующее сочетание параметров гидромониторной струи, обеспечивающее окончательный отрыв и увлече­ние частиц, преодоление угнетающего их перепада давления, образующе­гося при непрерывном процессе фильтрации жидкости в зону разрушения.

Выбор оптимальных процессов, связанных с бурением скважины, пока невозможен из-за различных технико-технологических трудностей и не­знания упругих, пластических, прочностных и абразивных свойств горных пород. Тем не менее, пользуясь обобщенными показателями, характери­зующими свойства горных пород, можно добиться существенных результа­тов. Один из таких показателей — буримость горных пород.

Под буримостью понимают углубление скважины за 1 ч собственно бурения — так называемую механическую скорость проходки vM (м/ч). Эта скорость с течением времени вследствие износа долота экспоненциально уменьшается.

При правильно подобранных режимах бурения, когда обеспечивается объемное разрушение горных пород, механическая скорость изменяется обратно пропорционально твердости. Она зависит также от других свойств (упругости, пластичности и др.).

Если породы определенной группы разбуривают долотами одной и той же модели, одного размера, при постоянных режимах бурения, то по темпу снижения механической скорости проходки можно судить об относитель­ной абразивной способности пород.

Физико-механические свойства горных пород

Газ, нефть и вода размещаются в коллекторах, приуроченных главным образом к осадочным породам. Наиболее распространенным минералом, формирующим коллекторы, является кремнезем. Нефтегазовые залежи приурочены также и к коллекторам, сложенным известняками; в составе горных пород, слагающих коллекторы, имеются глинистые минералы, по­левые шпаты и другие материалы. Отмечены месторождения нефти и газа в коллекторах, сложенных различного типа сланцами, а также в трещинах изверженных пород (в последнем случае промышленных скоплений не из­вестно) .

Осадочные горные породы (исключая карбонатные) состоят из зерен отдельных минералов различной величины, сцементированных в той или иной степени глинистыми, известковистыми и другими веществами. Хими­ческий состав пород нефтяных и газовых месторождений может поэтому характеризоваться большим разнообразием компонентов.

Наличие коллектора, обладающего лишь поровым пространством, — недостаточное условие существования нефтегазовой залежи. Нефть и газ в промышленных объемах обычно находят только в тех коллекторах, кото­рые совместно с окружающими их породами образуют ловушки различных форм, удобные для накопления флюидов (антиклинальные складки, моно­клинали, ограниченные сбросами или другими нарушениями складчатости, ловушки, образовавшиеся вследствие фациальных изменений пород, окру­жающих коллекторов и т.д.). Несмотря Читать далее