Отличительной особенностью большинства нефтяных месторождений, приуроченных к платформенным областям, является наличие обширных водонефтяных зон. Под водонефтя-ной зоной обычно понимается часть залежи, расположенная между внешним и внутренним контурами нефтеносности. Ширина водонефтяных зон залежей зависит от угла наклона слоев на крыльях структур и изменяется от нескольких километров до нескольких десятков километров. На Туймазин-ском, Шкаповском, Бавлинском и Серафимовской группе месторождений площади водонефтяных зон составляют от 40 до 70 % от общей площади залежей и содержат значительные запасы нефти — от 27 до 52 % от общих геологических.
Водонефтяные зоны и условия их эксплуатации на Ромаш-кинском, Ново-Елховском, Бондюжском и ряде других платформенных месторождений значительно различаются сложностью строения из-за высокой расчлененности нефтеносных горизонтов.
Сложность строения ВНЗ на месторождениях обусловливается тем, что в их пределах выделяются как пласты с подошвенной водой, так и нефтеносные. Площадь распростра-
нения пластов с подошвенной водой и величина запасов в них зависят не только от положения на структуре, но и во многом определяются расчлененностью разреза в интервалах отметок ВНК.
По условиям залегания пластов Ромашкинского месторождения выделяют] четыре типа водонефтяных зон:
водонефтяные зоны в виде локальных участков разнообразной формы внутри безводной части нефтяной залежи;
водонефтяные зоны, окаймляющие нефтяную залежь в виде узких полос шириной до 1,5 км;
водонефтяные зоны площадного развития (широкие полосы, поля);
водонефтяные зоны с хорошей гидродинамической связью с вышележащими высокопродуктивными пластами.
Разработка водонефтяных зон нефтяных месторождений является сложным технологическим процессом, как правило, характеризующимся повышенной обводненностью по добываемой продукции, относительно большими объемами попутно добываемой воды, низкой текущей и конечной нефтеотдачей пластов. Проектирование разработки таких залежей также сопряжено со значительными трудностями, связанными с невозможностью прогнозирования показателей заводнения подобных объектов на основе традиционных методов гидродинамических расчетов.
Одной из сложных задач изучения ВНЗ является определение начального и текущего положения водонефтяного контакта. Рассмотрим этот вопрос подробнее.
Согласно современным представлениям, понятие о водо-нефтяном контакте (ВНК) как граничной плоскости между нефтью и водой является условным. В нефтяных залежах, подстилаемых водой, имеется зона постепенного перехода от нефти к воде (переходная зона), возникающая под действием различных факторов. Распределение воды и нефти в пласте до начала его разработки связано с проявлением капиллярных сил в поле силы тяжести, обусловленном наличием в пласте погребенной воды и другими факторами. Капиллярные силы в гидродинамическом поле давления препятствуют установлению четкой границы раздела между водой и нефтью, вызывая образование переходной зоны в процессе разработки пласта, независимо от того, была она или нет в начальный момент.
Переходная зона от нефти к воде образуется в процессах как формирования залежи, так и ее эксплуатации при вытеснении нефти водой. Как показывают многочисленные экспе-
0,7 kuv, мкм’
Рис. 1.5. Зависимость толщины hп переходной зоны от проницаемости коллектора kпр
риментальные исследования и теоретические расчеты, соотношение насыщенности коллектора нефтью и водой по разрезу продуктивного пласта изменяется. Верхняя часть нефтяного пласта содержит минимальное количество связанной воды. Эта вода при существующих на практике перепадах давления неподвижна и находится в пленочном состоянии с толщиной пленки в сотые и тысячные доли микрона. Наличие такой воды в нефтеносных пластах впервые было установлено в 1928 г. Н.Т. Линдитропом и В.М. Николаевым. По данным С.Л. Закса и промыслово-геофизических исследований, объем связанной воды изменяется от единиц до 70 % объема пор.
Толщина переходной зоны сильно изменяется как в зависимости от физических свойств пористой среды, так и от физико-химических свойств насыщающих ее жидкостей. Анализ фактического материала по Туймазинскому и Бавлинскому месторождениям показывает, что размер переходной зоны колеблется от 1 до 7 м.
В условиях многих месторождений обнаруживается корреляционная зависимость толщины переходной зоны от проницаемости коллектора. С увеличением коэффициента проницаемости породы толщина переходной зоны уменьшается.
В переходной зоне, особенно в условиях платформенных месторождений с обширными водонефтяными площадями, сосредоточены значительные запасы нефти. Поэтому для правильного подсчета запасов нефти, проектирования и разработки нефтяных месторождений необходимо иметь четкое представление о характере переходной зоны. Точное установление положения водонефтяного контакта имеет важное значение для определения как начальных, так и текущих запасов нефти. Например, для средних размеров нефтяных залежей Башкирии и Татарии ошибка в отбивке водонефтяного контакта на 1 м искажает величину извлекаемых запасов до 1 млн. т, а для крупных месторождений — на несколько десятков миллионов тонн.
При наличии в пласте переходной зоны различные исследователи рекомендуют проводить водонефтяной контакт условно на различных уровнях.
Американский исследователь Дж. Джонс считает, что за контакт между водой и нефтью необходимо принимать отметку, ниже которой притоков нефти в скважинах не наблюдается. Другие американские исследователи — Д. Амикс, Д. Басс и Р. Уайтинг отмечают, что наиболее правильно при-
М.А. Жданов] при практических расчетах рекомендует проводить водонефтяной контакт условно по подошве переходной зоны. В.Л. Комаров советует принимать при расчетах за водонефтяной контакт не уровень нулевой фазовой проницаемости для воды, а уровень нулевой фазовой проницаемости для нефти, что примерно соответствует нижней границе переходной зоны.
Лучше всего водонефтяной контакт устанавливать по удельному сопротивлению в области переходной зоны. Однако определение удельного сопротивления этой зоны во многих случаях практически невозможно, особенно в неоднородных коллекторах [56]. В таких случаях, по мнению Н.Н. Со-хранова [200], условное положение водонефтяного контакта следует проводить на 1,0—1,5 м выше нижней границы переходной зоны.
Таким образом, в настоящее время практически нет единого подхода в методике проведения водонефтяного контакта в водонефтяных зонах пласта.
В исследованиях С.А. Султанова по данным промыслово-геофизических исследований скважин, пробуренных на участках залежей, где наблюдается перемещение водонефтяного контакта, отмечается увеличение толщины переходной зоны в процессе разработки пласта. Это подтверждается экспериментальными исследованиями по вытеснению нефти водой на моделях пласта, выполненными В.П. Оноприенко [149].
Пример увеличения толщины переходной зоны по скв. 443 Бавлинского нефтяного месторождения, заимствованный из монографии С.А. Султанова, приведен на рис. 1.7. В этой скважине переходная зона, образовавшаяся в процессе эксплуатации, фиксируется характерной зазубренностью кривой ρк малых градиент-зондов с одновременным понижением кажущегося сопротивления. Начальное положение ВНК четко отмечалось на абсолютной отметке — 1486,4 м
пробуренным до начала разработки данного участка залежи.
Положение ВНК через 6 лет поднялось до водненной зоне по данным бокового электрического зондирования содержалось около 40 % нефти.
Красивый город ждет своих горожан продажа Харьков Покупайте недвижимость в Харькове- ассортимент на нашей доске
А почему бы не поменяться жильем? Ведь купля-продажа занимает больше времени иногородний обмен домов в батайске фото Подберите подходящий вариант