Архив метки: буровой

Признаки проявлений

Поступление пластовых флюидов в ствол бурящейся скважины опре­деленным образом отражается на гидравлических характеристиках цирку­ляционного потока и свойствах бурового раствора, выходящего из скважи­ны. Возникающие при этом на поверхности сигналы или признаки прояв­лений обладают различной значимостью в зависимости от информативно­сти, времени поступления и интенсивности притока флюида.

Практикой бурения установлены следующие признаки газонефтеводо-проявлений:

увеличение объема (уровня) бурового раствора в емкостях циркуляци­онной системы;

повышение расхода (скорости) выходящего потока бурового раствора из скважины при неизменной подаче буровых насосов;

уменьшение против расчетного объема доливаемого в скважину буро­вого раствора при подъеме бурильной колонны;

увеличение против расчетного объема бурового раствора в приемной емкости при спуске бурильной колонны;

повышение газосодержания в буровом растворе;

возрастание механической скорости бурения;

изменение показателей свойств бурового раствора;

изменение давления на буровых насосах.

Газ может постепенно проникать в раствор в виде мельчайших пу­зырьков через плохо заглинизированные стенки скважины или вместе с выбуренной породой. Особенно сильно раствор насыщается газом во время длительных перерывов в бурении. Пузырьки газа на забое скважины нахо­дятся под давлением, отчего газ сильно сжат, а размеры пузырьков чрезвы­чайно малы. При циркуляции раствор поднимается вверх и выносит с со­бой пузырьки газа, при этом, чем выше они поднимаются, тем меньше ста­новится давление на них и тем больше они увеличиваются в размерах. На­конец, пузырьки становятся настолько крупными, что занимают большую часть объема раствора, и плотность его значительно уменьшается. Вес столба уже не может противостоять давлению газа, и происходит выброс. Постепенно просачиваясь в скважину, вода и нефть также уменьшают плотность раствора, и в результате возможны выбросы. Выбросы могут возникнуть и при понижении уровня промывочной жидкости в скважине, которое происходит или вследствие потери циркуляции, или же во время подъема труб в случае недолива скважины.

В случаях, указанных выше, необходимо усилить промывку скважины, приостановить бурение или спуск-подъем до особого распоряжения и од­новременно следует принять меры к дегазации раствора.

Чтобы предотвратить выброс, гидростатическое давление столба жид­кости в скважине должно быть на 5—15 % выше пластового в зависимости от глубины скважины. Избыточное давление на пласт достигается приме­нением утяжеленных буровых растворов. При утяжелении раствора обра­щают внимание на вязкость, сохраняя ее по возможности минимальной.

Однако нельзя ограничиваться только утяжелением бурового раствора как мерой борьбы с выбросами газа, нефти или интенсивным переливом воды, так как выброс может быть неожиданным или начаться довольно бурно в чрезвычайно короткий отрезок времени, а утяжеление раство­ров — операция длительная.

Для предотвращения уже начавшегося выброса необходимо немедлен­но закрыть скважину, что легко осуществить, если ее устье оборудовано специальным противовыбросовым оборудованием — превентором, задвиж­ками и др.

Гидроциклонные шламоотделители

Гидроциклоны представляют собой инерционно-гравитационные клас­сификаторы твердых частиц и широко применяются в промышленности для разделения суспензии на жидкую и твердую фазы. В бурении гидроци­клоны используют для отделения грубодисперсного шлама от бурового рас­твора. В качестве шламоотделителей гидроциклоны часто могут конкуриро­вать даже с виброситами. Так, при удалении частиц шлама размером менее 0,5 мм экономическая эффективность гидроциклонов и вибросит одинако­ва, если обрабатывается неутяжеленный буровой раствор. С уменьшением размера частиц шлама эффективность гидроциклонов повышается, а пре­имущества их при удалении шлама с размером частиц менее 74 мкм стано­вятся абсолютно бесспорными.

К сожалению, гидроциклонные шламоотделители, как правило, непри­менимы для очистки утяжеленного бурового раствора вследствие больших потерь утяжелителя со шламом.

Гидроциклонные шламоотделители

Гидроциклон представляет собой цилиндр, соеди­ненный с усеченным перевернутым конусом (рис. 7.12). Нижняя часть конуса заканчивается насадкой для слива песков, а цилиндрическая часть оборудуется входной насадкой, через которую нагнетается буровой раствор, и сливным патрубком, через который отво­дится очищенный раствор.

Буровой раствор насосом подается через входную насадку в цилиндрическую часть гидроциклона по ка­сательной к внутренней поверхности. Обладая сравни­тельно большой скоростью на входе, частицы шлама под действием инерционных сил отбрасываются к стенке гидроциклона и движутся к песковой насадке в

Гидроциклонные шламоотделителиРис. 7.12. Схема гидроциклона для очистки бурового раствора от шлама

соответствии с законом Стокса. Тонкодисперсные частицы шлама вместе с компонентами бурового раствора сосредоточиваются в спиралевидном по­токе, движущемся снизу вверх. Попадая в сливной патрубок, очищенный раствор выводится из циклона, а шлам (пески) перемещается внешним, движущимся вниз спиралевидным потоком к песковой насадке и выгружа­ется через нее вместе с некоторой частью бурового раствора.

Технологические показатели работы циклона при разделении суспен­зии на жидкую и твердую фазы ухудшаются при уменьшении напора по­дающего насоса, увеличении вязкости или плотности подаваемой жидко­сти, повышении концентрации твердых частиц в суспензии, понижении плотности твердой фазы, уменьшении размера отделяемых частиц, резком отличии формы частиц от сферической, сокращении размера отверстия песковой насадки.

Гидроциклонные шламоотделители делят на песко- и илоотделители условно. Пескоотделители — это объединенная единым подающим и слив­ным манифольдом батарея гидроциклонов диаметром 150 мм и более. Ило-отделителями называют аналогичные устройства, составленные из гидро­циклонов диаметром 100 мм
и менее. Число гидроциклонов в батареях пес­ко- и илоотделителя разное.

Как и вибросита, эти аппараты должны обрабатывать весь циркули­рующий буровой раствор при любой подаче буровых насосов. Считается, что производительность пескоотделителя должна составлять 125 %, а илоот­делителя 150 % от максимальной подачи насоса. Это позволяет гарантиро­вать обработку всего потока бурового раствора на гидроциклонных шламо-отделителях, а иногда использовать часть очищенного раствора для разбав­ления неочищенного и таким образом существенно повышать эффектив­ность работы гидроциклонов.

Гидроциклонные шламоотделители обычно включают в работу с мо­мента забуривания скважины. Уже при бурении под кондуктор системы очистки бурового раствора должна работать на полную мощность. Шлам необходимо удалить из бурового раствора раньше, чем он будет подвергнут многократному истиранию и диспергированию в циркуляционной системе и стволе скважины. Только в этом случае удается сохранить стабильными параметры бурового раствора, избежать перерасхода запасных деталей к гидравлическому оборудованию, сохранить стабильный ствол и достичь высоких показателей работы долот.

В отечественной практике широко распространен гидроциклонный шламоотделитель ШГК, называемый пескоотделителем. Он представляет собой батарею из четырех параллельно работающих гидроциклонов диа­метром 150 мм. Буровой раствор в гидроциклоны подается вертикальным шламовым насосом.

Батарея гидроциклонов (рис. 7.13) состоит из сварной рамы 1, четырех гидроциклонов 2, крестовины 3 и четырех отводов 4 с резиновыми рукава­ми. Внутренняя часть рамы выполнена в виде лотка с наклонным дном и люком. В передней торцовой стенке установлен шибер. При открытом ши­бере песковые насадки погружаются в раствор со шламом, вытекающим через верхнюю кромку передней торцовой стенки. При открытом шибере шлам свободно вытекает через люк.

Гидроциклон (рис. 7.14) состоит из металлического корпуса 1, внутри которого установлен цельнолитой полый резиновый или пластмассовый конус 3, питающей резиновой насадки 5 и металлической сливной насадки.

Рис. 7.13. Пескоотделитель 1 ПГК

Гидроциклонные шламоотделители810

В нижнюю часть гидроциклона вставляется резиновая песковая насадка 4 с отверстием 15 или 25 мм. Раствор из гидроциклона сливается по патрубку 2.

Вертикальный шламовый насос (рис. 7.15) представляет собой центро­бежный насос погружного типа с открытым рабочим колесом 5, установ­ленным в полости 8. Колесо защищено дисками 7. Вместо сальника в нем используется разъемная резиновая втулка 4, которая служит не только уплотнителем, но и одновременно является опорой нижнего конца вала 6 насоса.

Два шарикоподшипника играют роль основных опор вала колеса. Они расположены в верхней части корпуса 3 насоса выше уровня перекачивае­мого раствора и надежно защищены от его воздействия.

Привод насоса осуществляется от вертикального фланцевого электро­двигателя 1 через упругую пальцевую муфту 2. Электродвигатель крепится к корпусу насоса, который имеет два опорных кронштейна с приваренны­ми цапфами для установки в емкости ЦС. Такое устройство позволяет пе­реводить насос из рабочего вертикального положения в горизонтальное для ремонта.

Гидроциклонные шламоотделители

Рис. 7.14. Гидроциклон

Гидроциклонные шламоотделителиПескоотделитель ШГК способен обра­батывать до 60 л/с бурового раствора и удалять из него частицы шлама размером 60 мкм при наименьшем допустимом давле­нии около 0,2 МПа. Общая масса установки составляет 1310 кг.

В настоящее время применяют более надежные модели пескоотделителей ПГ-50 и ПГ-90: число обозначает производитель­ность (в л/с). Они отличаются более стой­кими и совершенными по форме резино­выми элементами.

Кроме того, во многих районах России внедрены шламоотделители с гидроцикло­нами диаметрами 75 и 100 мм, так назы­ваемые илоотделители. Они представляют собой блок из 12—16 гидроциклонов, уста­новленных на общей раме и имеющих об­щий ввод раствора и поддон для сбора ила (шлама с раствором). Для подачи раствора используется вертикальный шламовый насос.

Опыт работы с буровыми растворами показывает, что оптимальное значение дав­ления на входе в гидроциклон для пескоот­делителей составляет 0,25 МПа, а для ило-отделителей — 0,32 МПа. Такие условия достигаются при давлении в нагнетательной линии насоса 0,4 — 0,5 МПа.

Основной    контролируемой    рабочей характеристикой   гидроциклонов   является плотность песков (илов). Плотность нижне­го продукта слива должна быть на 0,30 — 0,42 г/см3 выше плотности очи­щенного раствора.

Потери в гидроциклонах части бурового раствора со шламом всегда меньше потерь, которые связаны с необходимостью разбавления загущен­ного шламом раствора и его откачки в амбары.

В связи с высокой эффективной вязкостью растворов на углеводород­ной основе (РУО) эффективность работы гидроциклонных аппаратов сни­жается. Для этих растворов в качестве пескоотделителей используются илоотделители. Плотность сгущенного продукта при очистке неутяжелен-ных буровых растворов на углеводородной основе при одном и том же ко­личестве удаляемого песка будет меньше, чем при очистке раствора на водной основе. Например, сгущенный продукт, содержащий 25 % твердой фазы, при плотности раствора 1,14 г/см имеет плотность 1,48 г/см3, в то время как в РУО плотностью 1,02 г/см3
сгущенный продукт имеет плот­ность 1,39 ã/ñì3.

Обычные илоотделители не применяют для очистки утяжеленных бу-

Гидроциклонные шламоотделители

Рис. 7.15. Вертикальный шламовый насос ВШН-150

ровых растворов, так как, удаляя частицы шлама размером 25 мкм, они также удаляют из раствора практически весь барит с частицами размером более 16 мкм и часть барита с частицами меньшего размера. При очистке илоотделителем тяжелых растворов 95 % шлама будут составлять крупные частицы и одновременно будет теряться до 50 % барита.

В последние годы для очистки утяжеленных буровых растворов при­меняются так называемые сепараторы (рис. 7.16), которые состоят из гид­роциклонного илоотделителя 1, установленного над вибрирующей мелко­ячеистой просеивающей сеткой 2. Утяжеленный буровой раствор, очищен­ный с помощью вибросита, подается центробежным насосом в батарею гидроциклонов, где он разделяется на утяжеленный и неутяжеленный. Не-утяжеленный поток возвращается в циркуляционную систему, а утяжелен-

Гидроциклонные шламоотделители

Рис. 7.16. Гидроциклонный сепаратор

ный через песковые насадки попадает на тонкоячеистое вибросито, где частицы шлама, которые крупнее частиц утяжелителя, сбрасываются в от­вал, а остальная часть утяжеленного раствора просеивается через виброси­то и, возвратившись в циркуляционную систему, соединяется с неутяже-ленной частью раствора.

В связи с тем, что поток утяжеленного раствора значительно меньше потока неутяжеленного, можно использовать в сепараторах мелкоячеистые вибрирующие сетки.

 ПОСТУПЛЕНИЕ ГАЗА В СКВАЖИНУ ПРИ БУРЕНИИ

При бурении глубоких скважин нельзя исключить возможность газо-нефтеводопроявлений (ГНВП), которые являются одним из самых распро­страненных видов осложнений. ГНВП нередко заканчиваются нерегули­руемыми фонтанами пластовых флюидов, что часто приводит к гибели скважин и оборудования, а также потерям углеводородного сырья.

Проникновение газа в буровой раствор приводит к изменению его свойств. Вязкость и статическое напряжение сдвига буровых растворов возрастают, что в значительной степени затрудняет проведение профилак­тических мероприятий по их дегазации. Поступление газа в скважину вы­зывает падение плотности буровых растворов. Увеличивается разница плотности истинной и кажущейся, вследствие чего буровые растворы утя­желяют, хотя это не вызывается технологическими и геологическими усло­виями и может привести к поглощению раствора с последующим сниже­нием противодавления на пласты.

При низких значениях вязкости и статического напряжения сдвига наблюдается «кипение» бурового раствора в скважине и желобной сис­теме.

Следствием поступления газа в скважину может явиться перелив бу­рового раствора с последующим выбросом и фонтанированием; 4%-ное га-

зонасыщение бурового раствора приводит к понижению коэффициента подачи насоса на 12—19 %.

Газовые выбросы далеко не всегда могут быть замечены в своем раз­витии. Падение противодавления на пласт происходит постепенно, без ви­димых на устье скважины изменений, и после наступления «неустойчивого равновесия» возможен выброс с последующей работой пласта без проти­водавления.

Отмечены случаи газирования бурового раствора во время остановок скважины без промывки в течение более 1 ч, а также возникновения от­крытого фонтанирования скважин при подъеме инструмента.

Для предупреждения ГНВП повышают плотность бурового раствора из того расчета, что давление его столба должно быть выше пластового. Ниж­ний предел превышения забойным давлением пластового ограничен техни­ческими нормами, а верхний — нет. Опасаясь ГНВП, буровики, как прави­ло, стараются не рисковать и чрезмерно утяжеляют буровой раствор. В не­которых районах репрессия на пласты составляет 7 — 15 МПа и более. При­нятие таких мер при проводке скважин приводит к снижению скорости их бурения, росту опасности возникновения прихватов бурильной колонны, поглощениям бурового раствора, закупорке коллекторов и, как следствие, к снижению эффективности геологопоисковых и буровых работ, повышению их стоимости и другим негативным явлениям.

Практика буровых работ в нашей стране и за рубежом показывает, что повышение эффективности глубокого бурения связано с понижением репрессии на разбуриваемые пласты, а также с уменьшением содержания частиц выбуренной породы, в том числе коллоидных, в буровых растворах.

Необходимо иметь в виду, что безопасное ведение работ предполагает совершенствование мер безопасности, основными из которых являются:

прогнозирование пластового (порового) давления на всех стадиях про­ектирования и строительства скважин;

разработка надежных методов проектирования конструкций скважин;

разработка и производство надежного устьевого оборудования — пре-венторов, дросселей, сепараторов, дегазаторов, запорной арматуры и др.;

создание технических систем для обнаружения флюидопроявлений на ранней стадии их возникновения;

разработка более совершенных методов расчета изменения забойного давления при бурении, спускоподъемных операциях, а также во время дли­тельных остановок;

разработка и внедрение способов и технических средств ликвидации проявлений.

ТРАНСПОРТИРОВАНИЕ ШЛАМА НА ПОВЕРХНОСТЬ

Анализ современного состояния проблемы очистки ствола бурящейся скважины от выбуренной породы показывает, что нет единого мнения о влиянии режимов течения, показателей свойств бурового раствора, про­должительности промывки и частоты вращения бурильных труб на транс­портирующую способность потока бурового раствора. Заключения о влия­нии реологических показателей на выносную способность буровых раство­ров противоречивы, а механический принцип относительности, широко используемый для расчета скорости восходящего потока ньютоновских жидкостей, в случае применения буровых растворов нуждается в экспери­ментальной проверке. Кроме того, не ясен вопрос о выборе расчетного диаметра частиц выбуренной породы, предназначенных к гидротранспорту по стволу скважины.

Таким образом, из-за отсутствия научно обоснованных рекомендаций по выбору основных параметров промывки, обеспечивающих совершенную очистку ствола скважины, и недостатка формализованных представлений о процессах гидротранспорта шлама составление важнейших ограничений гидравлических программ в настоящее время затруднено, что не позволяет использовать потенциальные резервы повышения эффективности бурового процесса в результате интенсификации гидротранспорта выбуренной по­роды по стволу бурящейся скважины.

Статистический анализ исследованных проб бурового шлама позволяет ориентировочно вычислить содержание частиц в буровом растворе.

Диаметр частиц, мм……………..       > 1,5-г-2,2         > 3,СМ-4,5        > 6V7

Содержание ÷àñòèö, %…………       78-82            50                  5-10

Максимально возможный размер шлама достигает 14—15 мм.

Очевидно, что при расчетах процесса гидротранспорта следует ориен­тироваться на шлам либо наибольшего размера, либо наибольшего объема. Так, представляется рациональным для предотвращения зашламления ство­ла скважины принять меры для удаления частиц размером более 1,5 — 2 мм, а при внезапных остановках циркуляции предотвратить осаждение наибо­лее крупных частиц. Однако при сальникообразовании, по-видимому, сле­дует рассматривать возможности удаления или предотвращения образова-

ния более мелких частиц, составляющих 20 — 30 % общей массы шлама, об­разовавшегося при бурении. Для уточнения этих вопросов необходимы четкие представления о транспортирующей способности буровых раство­ров.

ВЛИЯНИЕ ПОКАЗАТЕЛЕЙ СВОЙСТВ И ТИПОВ БУРОВЫХ РАСТВОРОВ НА СКОРОСТЬ БУРЕНИЯ

Основные показатели свойств бурового раствора (плотность, вязкость, показатель фильтрации, содержание и состав твердой фазы) зависят, пре­жде всего, от компонентного состава. Нет ни одного материала для буро­вых растворов, который бы сугубо избирательно воздействовал на показа­тели свойств приготовленной системы. С увеличением содержания твердой фазы возрастает плотность, но уменьшается показатель фильтрации. Обра­ботка растворов полимерами с целью уменьшения показателя фильтрации сопровождается повышением вязкости системы. Разжижение бурового рас­твора, как правило, увеличивает показатели его фильтрации.

Таким образом, основные показатели технологических свойств буро­вого раствора взаимосвязаны. Однако путем комбинации реагентов удается избирательно регулировать любой показатель при фиксировании осталь­ных. Поэтому представляется целесообразным рассмотреть степень влия­ния каждого показателя на эффективность работы долот и скорость буре­ния скважин. Но при вскрытии продуктивного пласта остается не решен­ной проблема ненарушения его проницаемости.

Качественные зависимости механической скорости проходки от пока­зателей свойств бурового раствора свидетельствуют о том, что эффектив­ность работы долота ухудшается по мере увеличения плотности, количества твердой фазы, вязкости раствора и уменьшения фильтрации. Однако эти зависимости не равнозначны. Наибольшее влияние на механическую ско­рость проходки оказывают плотность и наличие твердой фазы бурового раствора. Воздействие вязкости всегда заметно, но менее существенно. Что касается показателя фильтрации, то его влияние установлено, однако ско­рее обусловлено изменением вязкости: с увеличением показателя фильтра­ции уменьшается вязкость бурового раствора.

Путем обработки промысловых данных методами математической ста­тистики удалось установить, что с увеличением плотности р бурового рас­твора механическая скорость проходки гиперболически понижается. Осо­бенно это заметно в интервале р = 1,0+1,5 г/см3.

Убедительные данные получены при бурении скважин на Кубани, где уточнены требуемые значения гидростатических давлений в скважинах ряда площадей, в результате чего появилась возможность понизить плот­ность бурового раствора.

На примере площадей Днепровско-Донецкой впадины В.П. Мациев-ский показал влияние плотности бурового раствора на механическую ско­рость проходки. С увеличением плотности бурового раствора от 1,2 до 1,4 механическая скорость проходки уменьшалась почти вдвое.

Плотность бурового раствора, г/см3………………..     1,20         1,24         1,28         1,32         1,35         1,40

Механическая скорость проходки, м/ч………     7,4           6,6            6,0            5,0            4,5            4,2

Данные бурения скважин показывают отрицательное влияние твердой фазы на показатели работы долот. По мере увеличения общего содержания твердой фазы скорость vM и проходка на долото, как правило, уменьша­ются.

Влияние твердой фазы на показатели работы долот зависит от способа бурения. Результаты бурения на севере Тюменской области (М.В. Холик и др., 1980) показали, что наиболее вредно на работу долот влияет твердая фаза при турбинном бурении.

Влияние на механическую скорость проходки содержания твердой фа­зы в растворе исследовано П. Муром. Снижение содержания твердой фазы от 36 до 4 % способствует росту механической скорости проходки. При этом уменьшение количества твердой фазы в области высоких ее концен­траций, например, от 24 до 20 % приводит к увеличению vM всего на 3 %, а уменьшение в области более низких концентраций, например, от 12 до 8 % обеспечивает прирост vM на 9 %. Эта тенденция усиливается по мере даль­нейшего снижения содержания твердой фазы в растворе.

Природа воздействия твердой фазы бурового раствора на эффектив­ность разрушения горных пород выражается кроме повышения плотности

бурового раствора в ухудшении условий зарождения и распространения трещин, формирующих лунку выкола.

Более детальный анализ показывает, что разные материалы, состав­ляющие твердую фазу буровых растворов, по-разному влияют на показате­ли бурения скважин.

Материал……………………………………………………………………..        Áàðèò        Áóðîâîé øëàì       Ãëèíà

Снижение механической скорости проходки,  %,  при

увеличении содержания твердой фазы на 1 %………………..        2,6              4,8                            6,7

Примечание. Общее содержание твердой фазы 4—12 % (по объему).

При эквивалентном объемном содержании частиц бурового шлама и барита снижение скорости в первом случае в 2 раза больше, чем во вто­ром. Если учесть, что барит повышает плотность бурового раствора в 2 раза эффективней, чем шлам, то становится очевидным, что при необходи­мости увеличения плотности бурового раствора следует использовать более тяжелые материалы (например, барит), а не выбуренную породу, стремясь всегда к минимизации объемного содержания его твердой фазы.

Особенно неблагоприятно влияет на работу долота глинистая состав­ляющая бурового раствора: на каждый процент увеличения глинистых час­тиц в растворе потеря в механической скорости проходки составляет 6 — 7 %, т.е. более чем в 2,5 раза больше, чем при увеличении на 1 % концен­трации барита. Отсюда можно сделать вывод, что в буровом растворе не­обходимо иметь минимальную концентрацию глинистых частиц и тщатель­но контролировать и регулировать ее.

Влияние вязкости бурового раствора на механическую скорость про­ходки менее существенно, чем влияние плотности, однако оно часто замет­нее и однозначнее.

С увеличением условной вязкости бурового раствора в среднем от 4 — 20 до 8— 120 с (по СПВ-5) механическая скорость проходки уменьшается на 20 — 40 %. Особенно заметно это в области повышенных плотностей (1,3 — 1,4 г/см3) бурового раствора (А.Н. Яров, А.Н. Мельничук).

Особенно тесная корреляция в стендовых условиях наблюдается меж­ду механической скоростью проходки и вязкостью фильтрата бурового раствора. При изменении его вязкости от 210~3
до 810~3 Па-с механиче­ская скорость проходки линейно уменьшается как для шарошечных, так и для алмазных долот в 1,5 — 2 раза.

Итак, теоретические, лабораторные и промысловые данные подтвер­ждают, что показатель вязкости бурового раствора (или его фильтрата) влияет на эффективность разрушения долотом пород на забое: с увеличе­нием этого показателя условия разрушения пород ухудшаются.

Статистические данные о бурении скважин в Днепровско-Донецкой впадине показывают, что механическая скорость проходки надежно корре-лируется с показателем фильтрации используемого бурового раствора. Увеличение механической скорости проходки отмечается в связи с ростом показателя фильтрации во всем диапазоне изменения плотности. Особенно это заметно при повышенной плотности бурового раствора, когда при из­менении показателя фильтрации от 5 до 30 см3 за 30 мин механическая скорость проходки увеличивается в среднем на 20 — 50 %.

Природа воздействия фильтрации буровых растворов на механиче­скую скорость проходки выражается в изменении гидродинамических про­цессов в разрушаемом на забое слое породы.

Для достижения высоких vM необходимо, чтобы начальная фильтрация буровых растворов в момент разрушения породы на забое была высокой, так как это способствует быстрейшему выравниванию перепада давления. Однако при вскрытии продуктивных объектов к выбору показателя фильт­рации растворов необходимо подходить избирательно и осторожно, так как качество вскрытия пласта — основной показатель успеха бурения.

Зарубежный и отечественный опыт убеждает, что от степени совер­шенства технологии промывки скважин в значительной мере зависят ме­ханическая скорость проходки и проходка на долото — основные техниче­ские показатели бурения скважин. Правильно выбранные тип бурового раствора, показатели его технологических свойств, режим циркуляции и распределение гидродинамических давлений в циркуляционных каналах позволяют довести эти технические показатели до максимума, а вероят­ность возникновения осложнений свести к минимуму.

В современной технологии промывки скважин еще много неисполь­зованных возможностей.

Переход в зарубежной практике бурения скважин на применение бу­ровых растворов с содержанием твердой фазы на 3 — 4 % (вместо 10—12 %) позволил увеличить проходку на долото до 40 %, механическую скорость проходки — до 30 %. Снижение концентрации глинистых частиц на 1 % позволило получить приращение механической скорости проходки в сред­нем íà 6 — 7 %.

Из практики бурения скважин известно, что буровой раствор на угле­водородной основе обходится очень дорого. К тому же он создает опреде­ленные неудобства для обслуживающего персонала и часто пожароопасен. Однако с помощью таких растворов можно достичь тех результатов, кото­рых невозможно достичь растворами на водной основе, например, при вскрытии продуктивных горизонтов.

Растворы на углеводородной основе могут обеспечить высокие показа­тели работы долот. Такие растворы более устойчивы к высоким температу­рам, позволяют избежать осложнений при бурении солевых отложений и пород, склонных к набуханию в водных средах.

Положительна роль раствора при наличии сероводорода и двуокиси углерода, так как дисперсионная среда раствора неэлектропроводна. Умело регулируя водосодержание в них, можно на длительный период избежать осыпей и обвалов в неустойчивых глинистых разрезах.

В 1967 г. СР. Lawhon сообщил результаты экспериментов по определе­нию влияния воды в дизельном топливе на скорость проходки в известня­ках проницаемостью (0,35—1,3)-10~13 м2 и в песчаниках проницаемостью до 510~13 м2 при бурении шарошечным долотом малого диаметра (d я я 32 мм). Он установил, что скорость проходки с чистым дизельным топли­вом составляла 98 % скорости проходки при бурении на воде; для бурового раствора она составляла 86 %; при увеличении содержания воды от 5 до 40 % относительная скорость проходки несколько увеличилась (на 7 %).

На основе своих опытов СР. Lawhon сделал следующие выводы:

1. Маловязкий раствор на нефтяной основе, в частности дизельное то­
пливо, позволяет получить такую же скорость проходки, как и с использо­
ванием технической воды.

2.      Растворы на углеводородной основе с высокой концентрацией воды
позволяют обеспечить примерно такую же скорость проходки, как и высо­
кокачественные буровые растворы на водной основе с оптимальной добав-

кой смазывающих веществ (нефть, гудроны и др.). Позже эти выводы были подтверждены.

Положительный опыт применения в качестве бурового раствора гид­рофобной эмульсии, стабилизатором для которой служит многотоннажный продукт нефтехимической промышленности — окисленный петролатум, описан А.Г. Розенгафтом. Путем введения в эту эмульсию гидроокиси кальция достигается хорошая агрегативная устойчивость, позволяющая увеличить ее «глиноемкость» до 20 % по весу. Такая эмульсия включает в себя 45 % дизельного топлива или нефти, 50 % воды, 5 % окисленного пет-ролатума, 3 — 5% гидроокиси кальция. В зависимости от минералогического состава хемогенных пород вода может насыщаться хлористыми солями на­трия, магния или кальция.

В Мамонтовском УБР объединения «Зипсиббурнефть» разработан и внедрен маловязкий нефтеэмульсионный буровой раствор, который полу­чают, добавляя в буровой раствор на водной основе нефть совместно с эмульгатором неионогенного типа и переводя его в устойчивую эмульсию.

Применение такого раствора при бурении скважин позволило улуч­шить показатели работы долот: проходка на долото увеличилась в среднем на 15 %, а механическая скорость проходки — на 7 %.

Применение нефтеэмульсионных растворов позволяет сохранить ус­тойчивым ствол скважины в глинистых отложениях, что не ухудшает пока­затели долота, а способствует улучшению выноса керна и сохранению ес­тественной проницаемости нефтеносных горизонтов.

Преимущества растворов на углеводородной основе (РУО) по сравне­нию с растворами на водной основе объясняются следующим:

1.      Фильтрат РУО представлен углеводородами, благодаря ему исключа­
ется набухание глинистых минералов, сохраняется естественная устойчи­
вость глинистых резервов и естественная проницаемость гранулярных кол­
лекторов, в цементирующем веществе которых присутствует глина.

2.      РУО не только предотвращает диспергирование шлама, особенно
при бурении в глинах, но и агрегирует мелкие частицы в более крупные. В
результате этого не только улучшается степень очистки забоя и ствола
скважины от обломков породы, но и резко повышается эффективность
очистки промывочной жидкости от шлама.

3.      РУО обладает хорошей смазывающей способностью, в результате
чего не только уменьшается вероятность затяжек-посадок, прихватов бу­
рильной колонны, степень ее скручивания при вращении ротором, но са­
мопроизвольно увеличивается нагрузка на долото в связи с уменьшением
силы трения труб о стенки скважины при одинаковых значениях осевых
нагрузок,    определяемых    на    поверхности    по    индикатору   веса.    Это
способствует увеличению скорости проходки.

4.      Вязкость РУО уменьшается при повышенных температурах, что мо­
жет стать положительным фактором при бурении глубоких высокотемпе­
ратурных скважин, так как вызывает раннюю турбулизацию потока под
долотом.

Однако, несмотря на все эти преимущества, буровые растворы на уг­леводородной основе следует рассматривать как предназначенные главным образом для вскрытия нефтегазоносных горизонтов и бурения в разрезах, осложненных неустойчивыми глинистыми породами, хемогенными отло­жениями и массивом многолетнемерзлых пород. Более широкому их при­менению будут и впредь препятствовать высокая стоимость, неудобство в

обслуживании, взрыво- и пожароопасность, расход важных материалов, трудность хранения и утилизации после окончания бурения скважины, а также другие проблемы, связанные с качеством крепления скважин и ра­зобщения пластов, глубинными геофизическими исследованиями и охра­ной окружающей среды.