Смолы методы исследования

Б. Тиссо и Д. Вельте 30 в соответствии с применяемыми методами исследования нефтей разработали их классификацию (табл. 2), в основе которой лежат данные о содержании в нефтях УВ различного структурного типа — алканов, цикланов, также суммы аренов, смол и асфальтенов. Учитывалось также содержание серы — больше или меньше 1 %. Все данные отвечают фракции нефтей, кипящей выше ° С при атмосферном давлении.14

Эти же методы исследования были использованы для анализа гидрогенизатов смол. Так, с помощью хроматографического метода определен групповой состав жидкофазного гидрогенизата низкотемпературной смолы из черемховского угля состав асфальтенов 1, выделенных из угольного гидрогенизата. Из жидкофазного гидрогенизата бурого угля удалось выделить 8 парафиновых углеводородов, 6 полициклических углеводородов, 20 азотсодержащих соединений, 9 фенолов. Подробно исследован состав низкотемпературного гидрогенизата (процесс ТТН) буроугольной смолы.

В книге дана характеристика современного состояния производства дизельных топлив, рассмотрено влияние процессов смоло- и осадкообразования на ухудшение эксплуатационных свойств топлив, изложены экспериментальные данные по изучению кинетики инициированного окисления и автоокисления на начальных и глубоких стадиях процесса. Приведены кинетические характеристики окисляемо-сти дизельных топлив, контактирующих с конструкционными материалами. Дана оценка эффективности ингибиторов фенольного и амин-ного типа при стабилизации дизельных топлив. Обсуждаются способы стабилизации дизельных топлив, уделено внимание экспериментальным методам исследования качества дизельных топлив.2

Данные табл. вполне сопоставимы, потому что онп получены на основе применения единой. методики выделения смол пз нефтей, разделения выделенных смол на фракции и, наконец, с использованием единого комплекса методов исследования полученных фракции. Следовательно, различие в составе и свойствах как неразделенных смол, выделенных пз разных нефтей, так и в отдельных фракциях этих последних обусловлено особенностями химического состава и строения каждой из этих смол и вытекает из общего различия химпческой природы исследованных нефтей.455

Основной целью настоящего раздела практикума является ознакомление студента со стандартными или унифицированными методами исследования нефтей и нефтепродуктов, также с этапами исследования нефтей для получения их товарной характеристики. Однако с учетом уровня современных физико-химических методов исследования нефтей и нефтепродуктов и их многообразия выполнение этой задачи в полном ее объеме доступно только коллективу квалифицированных инженеров и лаборантов-Очевидно, студент должен проделать только наиболее важные испытания и определить те показатели качества, которые характерны для данных нефтяных фракций, например температура застывания, содержание серы и цетановое число для дизельных топлив, вязкость и коксуемость или содержание смол для остатков и такие общие свойства исходной нефти, как содержание серы, смол, фракций до и 350 °С. В конце глав 3 и 4 дано52
Развитие технологии, необходимость экспрессного контроля производства и совершенствование методов исследования состояния среды требуют разработки принципиально новых направлений исследования сложных физико-химических систем. Современные методы спектрального анализа трудно применять в исследовании природных и техногенных систем с очень большим числом компонентов, например, ряда биогеохимических систем, смол, нефтей, смесей полимеров, синтетических смол, высокомолекулярных продуктов деструкции полимеров и твердого топлива, высокомолекулярных углеводородных фракций. Спектры таких систем в видимой и УФ — областях имеют недискретный характер, четкие полосы поглощения практически отсутствуют 1,2.83

Я. А. Фиалков. Методы исследования лекарственных веществ. Медгиз, 6, (362 стр.).

В общей части книги описаны физические, оптические и химические методы, применяющиеся при исследовании. Специальная часть содержит изложение методов анализа жиров, восков, эфирных масел, смол. Рассматриваются также способы исследования растений, сложных фармацевтических и химико-фармацевтических препаратов.492


Учитывая, что ингибиторы коррозии взаимодействуют с пленкообразующими, целесообразно изучить эффективность введения ингибиторов в смолу или лак. Предложенный нами метод исследования водных вытяжек может быть использован для предварительных испытаний при подборе ингибиторов для покрытий.

Исследование асфальтенов и смол методом электронного парамагнитного резонанса91

Исследование смол методом ИК-спектроскопии93

Инфракрасная (ИК) спектроскопия используется в различных областях науки, и в каждой из них придается- этому термину различный смысл. Для химика-аналитика это удобный метод решения таких задач, как, например, определение пяти изомеров гексахлорциклогексана, качества парафина, смолы, полимера, эмульгатора в эмульсии для полировки, опознание страны, из которой вывезен контрабандный опиум.

Физику ИК-спектроскопия представляется методом исследования энергетических уровней в полупроводниках или определения межатомных расстояний в молекулах. Она может быть также полезна и при измерении температуры пламени ракетного двигателя.

Для химика-органика это метод идентификации органических соединений, позволяющий выявлять функциональные группы в молекулах и следить за ходом химических реакций. Для биолога ИК-спектроскопия — перспективный метод изучения транспорта биологически активных веществ в живой ткани, ключ к структуре многих естественных антибиотиков и путь познания строения клетки.

Физикохимику метод позволяет приблизиться к пониманию механизма гетерогенного катализа и кинетики сложных реакций. Он служит дополнительным источником информации при расшифровке структуры кристаллов. В этих и многих других областях знания ИК-спектроскопия служит исследователям мощным средством изучения тайн вещества. Вероятно, справедливо будет сказать, что из всех инструментальных методов ИК-спектроскопия наиболее универсальна.9



Полезно исследование суспендированных в воде ионообменных смол методом ядерного магнитного резонанса (ЯМР), который пригоден для характеристики анионообменников и катионообменников, предпочтительно с93

САВ представляют собой сложную многокомпонентную исключительно полидисперсную по молекулярной массе смесь высокомолекулярных углеводородов и гетеросоединений, включающих, кроме углерода и водорода, серу, азот, кислород и металлы, такие как ванадий, никель, железо, молибден и т. д. Выделение индивидуальных САВ из нефтей и ТНО исключительно сложно. Молекулярная структура их до сего времени точно не установлена. Современный уровень знаний и возможности инструментальных физико-химических методов исследований (например, n-d-М-метод, рентгеноструктурная, ЭПР- и ЯМР-спектро-скопия, электронная микроскопия, растворимость и т. д.) позволяют лишь дать вероятностное представление о структурной организации, установить количество конденсированных нафтено-ароматических и других характеристик и построить среднестатистические модели гипотетических молекул смол и асфальтенов.45

В общую схему токсико-гигиенической оценки ионообменных смол рационально включать в качестве ориентировочных методов исследования опыты на дафниях (и других водных организмах) и на изолированном сердце лягушки. Первые из них могут давать первоначальное представление о качестве водьг, пропущенной через ионитовые фильтры, вторые являются достаточно чувствительным экспресс-тестом для суждения об эффективности отмывки и других способов обработки товарных смол, также для сравнительной оценки токсичности ионитов разных марок.

ИССЛЕДОВАНИЕ ПИРОЛИЗА НЕКОТОРЫХ ФЕНОЛ-ФОРМАЛЬДЕГИДНЫХ СМОЛ МЕТОДОМ ТЕПЛОВОГО УДАРА9

Сланцевая смола является довольно оригинальным сырьем. Как показали исследования, проведенные во Всесоюзном Научно-исследователь-ском институте по переработке сланцев (ВНИИПС), при переработке этой смолы методы нефтяной технологии могут быть использованы лишь с большой осторожностью. Почти всегда вопросы переработки из-за своеобразия состава и свойств сланцевой смолы приходится решать совершенно иными путями.7

Манк В. В., Куриленко О. Д. Исследование межмолекулярных взаимодействий в ионообменных смолах методом ЯМР. Киев Наукова думка, 6. 80 с.

Углубление процесса переработки нефти, или, что то же самое, повышение степени ее использования и повышение выходов ценных товарных нефтепродуктов — высококачественных моторных топлив и химических продуктов, стало в наше время одним из актуальнейших направлений совершенствования технологии переработки нефти. Основным резервом для эффективного решения этой задачи является тяжелая, или высокомолекулярная, часть нефти, составляющая при нынешней технологии переработки нефти 25—30% от поступившей в переработку сырой нефти и получившая название тяжелые нефтяные остатки . Если учесть, что более половины этих остатков составляют так называемые неуглеводородные компоненты нефти, или смолисто-асфаль-теновые вещества, то станет ясно, какое большое научное значение и практическую актуальность приобретает проблема изучения состава, строения, свойств, химических реакций и основных направлений химической переработки и технического исиользова-Ш1Я нефтяных смол и асфальтенов.

Вполне понятно поэтому, что эта область химии и технологии и геохимии нефти все в большей и большей степени привлекает к себе внимание исследователей и инженеров. За носледние годы заметно расширилась география исследований в этой области и увеличилось число публикаций по составу, структуре и методам исследования смол и асфальтенов.

Опубликованные материалы рассредоточены в многочисленных специальных периодических изданиях разных стран и поэтому труднодоступны. Обобщающие монографические работы по смолисто-асфальтено-вым веществам нефти отсутствуют. В монографии одного из авторов Высокомолекулярные соединения нефти , второе издание которой вышло в 4 г. на русском и в 5 г. — на английском языке, несколько специальных глав посвящены этому вопросу.3

Расходы на контроль качества термореактивных смол очень велики, поэтому кроме основных требований к аналитической процедуре— воспроизводимость, точность н чувствительность — все большее значение приобретает экономичность метода, определяемая, сначала, степенью автоматизации соответствующего оборудования. Сегодня в аналитической химии фенольных смол все шире используют фнзнко-химическне методы исследований гель-проникающую хроматографию (ГПХ), газовую хроматографию (ГХ), жидкостную хроматографию высокого разрешения (ЖХВР) в купе с системами обработки информации на ЭВМ.92

Наиболее полное представление о коррозионных процессах, протекающих под лакокрасочной пленкой, могут дать электрохимические методы исследования в купе с физико-мехапиче-скими. Электрохимическим исследованиям подверглись пленки на основе алкидной смолы, модифицированной касторовым маслом (смолы ), и эпоксидно-меламиновой смолы (Э41М).

В качестве пигментов применяли смешанный хромат бария-калия и хромат цинка. Все покрытия наносили на металлические пластинки в один слой толщиной около 20 мкм, сушку производили при °С в течение 1 ч. Составляли коррозионный элемент из двух электродов, один из которых с покрытием, а другой — без покрытия. Изучались основные характеристики коррозионных элементов — потенциалы электродов, э.д.с, и сила тока.

Потому что образец в итоге исследуется в микроскопе в вакууме, вода либо должна быть удалена, либо давление ее паров должно быть уменьшено понижением температуры образца. Нет сомнения в том, что химическое обезвоживание приводит к потере легко диффундирующих веществ из клеток и тканей, вызванной химической фиксацией.

Хотя критические сравнительные исследования не производились, оказалось, что не существует большой разницы в воздействии этанола, метанола или ацетона в качестве обезвоживающих реактивов. Однако в работе 421 было установлено, что в растительном материале, обезвоженном диметоксипропаном, обнаружена существенно лучшая сохранность ионов (Ыа+, К+, С1 ) по сравнению с обезвоживанием в ацетоне.

Возможно обойтись без классических процедур обезвоживания, используя инертные процедуры обезвоживания, предложенные в 422, водно-растворимые смолы, метод заливки в глутаральдегиде-мочевине 423 или пропускание материала, прошедшего фиксацию в глутаральдегиде, через глутаральдегид с возрастающимп концентрациями вплоть до 50%, после чего ткань переносится прямо в эпон-812 404. Другая процедура 424 заключается в инфильтрации фиксированных образцов раствором поливинилового спирта (МШ 14 000) с возрастающими концентрациями вплоть до конечной 20%-ной концентрации.

Вода затем удаляется путем диализа, а образовавшийся твердый гель связан поперечными связями с глутаральдегидом. Однако оказывается, что эти процедуры незначительно снижают потерю растворимых материалов из исследуемых образцов. Простая сушка образца на воздухе также вызывает перераспределение элементов. Таким же образом процедура сушки в критической точке, которая обычно проводится в конце фиксации и обезвоживания, по всей видимости, приведет к слабому различию в концентрации растворимых веществ, которые давно уже были удалены в процессе

ИК-спектроскопия сыграла большую роль в развитии промышленности полимеров. Известно, что метод широко используется на практике для идентификации пластиков. ИК-спектроскопия имеет важное значение в производстве красителей для качественной идентификации связующих, пигментов и растворителей, для оценки качества сырьевых материалов, дозировки компонент смол, в исследованиях по стабилизации и окислению, в задачах по определению качества продуктов. После некоторого физического разделения эластомеров на компоненты их можно идентифицировать на главные и второстепен-

Следовательно, результаты всех методов исследования свидетельствуют о том, что основания вакуумного газойля, высшие алифатические амины, гидроксиэтилгеитадеценилглиоксалидин, пиридиновые основания нековых дистиллятов и супьфонатрие-вые соли сланцевой смолы являются эффективными ингибиторами

Совершенным методом исследования аминокислотного состава белков является хроматография на ионнообменных смолах, в частности на катионообменнике Дауэкс-50, содержащем суль-фогрулпы, сйязывающие ЫНз-группы аминокислот. Элюция производится при разных pH, концентрациях буфера и темпера-72

Люминесценция, или холодное , свечение под действием внешнего облучения — неотъемлемое свойство всех нефтей и природных продуктов их преобразования. Характерной чертой люминесценции является то, что способностью люминесцировать обладают не чистые вещества, а растворы.

Нефть — это природный раствор способных к люминесценции веществ — смол в не-люминесцирующих в основном соединениях — углеводородах. Люминесцирующие вещества имеют свои определенные спектры, отражающиеся в цвете люминесценции, их концентрация выражается в интенсивности свечения. На люминесцентных свойствах соединений нефти основан ряд методов исследования люминесцентные спектроскопия и микроскопия, люминесцентно-битуми-нологический анализ и др. Эти методы благодаря очень высокой чувствительности, экспрессности и простоте аналитических приемов широко используются в нефтяной геологии и геохимии.19

В книгу внесены потенциометрические методы анализа фенолятов, пиридиновых оснований, сульфата аммония. Включены новые фотоколориметри ч ё с к и е методы определения тиофена и сероуглерода в бензоле.

Дан примерный метод исследования состава бензольных углеводородов и определения сероуглерода с помощью хроматографии. Разработанные за последнее время методы и приборы автоматического определения влажности шихты, каменноугольной смолы, сульфата аммония в книге не освещены детально ввиду отсутствия серийного производства приборов. В текущее время конструкторское бюро автоматики Гипрококса проводит окончательную их разработку поэтому в соответствующих разделах книги изложены только принципы, на которых основано автоматическое определение влаги, и дана ссылка на работу Гипрококса. То же относится и к автоматическому методу определения остаточных бензольных углеводородов в коксовом газе.7

Разработанные нами методы исследования процессов образования и устойчивости водно-смоляных эмульсий и суспензий 1, а также определения эффективности ПАВ при разрушении этих систем 2 позволили установить, что с помощью некоторых неионогеняых деэмульгаторов (дисольвана 4411, проксанола 305, ОЖК) можно достичь высокой степени обезвоживания (90—92%) сильно обводненных и высокозольных смол, получаемых при бездымной загрузке коксовых печей методом пароияжекции.22

Изучение электрофизических свойств — дипольного момента молекул, молекулярной рефракции, поляризации и диэлектрической проницаемости — продуктов переработки твердых топлив имеет большой познавательный интерес, открывая новые пути к расшифровке их химического строения. Для сланцевой смолы определение этих параметров имеет и важное прикладное значение.

При использовании высококипящих фракций смолы в качестве пластификаторов для полимерных материалов, присадок к топливам и маслам, мягчителей для регенерации резины, компонентов покрытий и других продуктов полярность является одним из решающих условий их эффективности. Определение электрофизических констант оказывается полезным и при разработке хроматографических методов исследования смолы, поскольку распределение компонентов разделяемой смеси на полярных адсорбентах (силикагель, окись алюминия и др.) непосредст—венно зависит от дипольного момента их молекул и диэлектрической постоянной. Полярность существенно влияет и на важнейшие физико-химические свойства смолы.15

Манк В. В., Куриленко 0. Д. Исследование межмолекулярных взаимодействий в ионоподобных смолах методом ЯРМ.— Киев Наук, думка, 6.— 80 с.

Успехи в исследовании битумоидов в значительной степени связаны с развитием физических методов исследования Поскольку основу молекул битумоидов составляет углеродный скелет, применение количественных методов спектроскопии ЯМР С, позволяющее получить информацию о доминирующих типах взаимосвязи атомов, образующих скелет молекул битумоидов, наиболее перспективно 493—496 Состав и структура битумоидов, выделенных из углей различных месторождений, отражают особенности структуры и характер исходного материнского материала Для понимания закономерностей преобразования каустобиолитов в процессе катагенеза особое значение имеет установление в составе битумоидов так называемых реликтовых структур, к которым относятся нормальные и изопреноидные алканы, стераны, тритер-паны — составные части ископаемого органического вещества В углях различных стадий метаморфизма идентифицированы алканы нормального и изостроения (494, 495, причем в ряду при-стана и фитана установлено, что отнощение больще единицы и имеет тенденцию к уменьщению с увеличением стадии метаморфизма Пентациклические углеводороды гопанового ряда идентифицированы в угольных и торфяных экстрактах 495 Наряду с углеводородами в состав битумоидов входят воски, смолы, жирные и ароматические кислоты и их производные Все это очень верные признаки для понимания катагенеза угольного вещества363

Библиография для Смолы методы исследования:

426

>

Работа с прозрачной эпоксидной смолой бижутерия


Похожие статьи

Обратите внимание: