ОЧИСТКА БУРОВОГО РАСТВОРА ОТ ГАЗА

Газирование бурового раствора препятствует ведению нормального процесса бурения. Во-первых, вследствие снижения эффективной гидрав­лической мощности уменьшается скорость бурения, особенно в мягких по­родах; во-вторых, возникают осыпи, обвалы и флюидопроявления в резуль­тате снижения эффективной плотности бурового раствора (а следователь­но, и гидравлического давления на пласты); в-третьих, возникает опасность взрыва или отравления ядовитыми пластовыми газами (например, серово­дородом).

Попадающий в циркуляционный поток газ приводит к изменению всех технологических свойств бурового раствора, а также режима промывки скважины. Кроме очевидного уменьшения плотности раствора изменяются также его реологические свойства — по мере газирования раствор стано­вится более вязким, как и всякая двухфазная система. Пузырьки газа пре­пятствуют удалению шлама из раствора, поэтому оборудование для очистки от шлама работает неэффективно.

Кислые газы, такие как двуокись углерода, могут привести к пониже­нию рН раствора и вызвать его флокуляцию.

Снижение гидравлической мощности вследствие присутствия в рас­творе газа отрицательно сказывается на всем процессе бурения. Оптими-

зированные программы бурения требуют, чтобы на долоте срабатывалось до 65 — 70 % гидравлической мощности. Но снижение объемного коэффи­циента полезного действия насоса в результате газирования бурового рас­твора влечет за собой существенное уменьшение подачи насосов.


Газ из пласта попадает в буровой раствор в результате отрицательного дифференциального давления между скважиной и пластом либо вследствие высокой скорости бурения, когда пластовый газ не успевает оттесниться фильтратом от забоя и стенок скважины и попадает в поток раствора вме­сте с выбуренной породой.

Газ в буровом растворе может находиться в свободном, жидком и рас­творенном состоянии. По мере перемещения потока раствора к устью пу­зырьки свободного газа увеличиваются в объеме в результате снижения давления, сливаются друг с другом, образуя газовые пробки, которые про­рываются в атмосферу. Свободный газ легко удаляется из раствора в по­верхностной циркуляционной системе путем перемешивания в желобах, на виброситах, в емкостях. При устойчивом газировании, например во время бурения при несбалансированном давлении, свободный газ удаляют из бу­рового раствора с помощью газового сепаратора.

Пузырьки газа, которые не извлекаются из бурового раствора при пе­репаде давления между ними и атмосферой, оказываются вовлеченными в буровой раствор, и для их удаления требуется дополнительная энергия.

Полнота дегазации бурового раствора зависит от его плотности, коли­чества твердой фазы, вязкости и прочности структуры. Существенную роль играют также поверхностное натяжение жидкости, размер пузырьков и силы взаимного притяжения.

В связи с высоким поверхностным натяжением трудно поддаются де­газации буровые растворы на углеводородной основе, а также растворы, содержащие в качестве регулятора водоотдачи крахмал. Некоторые углево­дороды, проникая из пласта в буровой раствор при повышенных темпера­туре и давлении, остаются в жидком состоянии. Попадая в другие термо­динамические условия, например в поверхностную циркуляционную сис­тему, они превращаются в газ и заметно изменяют технологические свой­ства бурового раствора.

Некоторые газы при повышенных температуре и давлении проникают в межмолекулярную структуру бурового раствора и вызывают едва замет­ное увеличение его объема. Наиболее опасны в этом отношении растворы на углеводородной основе, в которые может проникать большое количест­во пластового газа. Обнаружить вовлеченный таким способом в буровой раствор природный газ очень трудно.

Растворы, газированные сероводородом, создают особенные трудности при дегазации:

система дегазации должна быть весьма эффективной, так как при объемной концентрации 0,1 % сероводород — опасный яд;

сероводород взрывоопасен даже при объемной концентрации 4,3 % (для сравнения, нижний предел взрываемости метана 5 %);

сероводород растворим в буровых растворах, его растворимость в воде приблизительно пропорциональна давлению;

сероводород обладает высокой корродирующей способностью.

Различная степень газирования бурового раствора требует применения разного оборудования для дегазации. Свободный газ удаляется достаточно просто. Поток раствора из межтрубного пространства поступает в сепара-

тор, где газ отделяется от раствора и направляется по отводной линии на факел. Оставшийся в растворе свободный газ удаляется в атмосферу окон­чательно на виброситах или в емкости для сбора очищенного от шлама раствора.

Газ, проникший в молекулярную структуру раствора, извлечь значи­тельно труднее. Для этого требуется не только затратить некоторую энер­гию, но и часто необходимо применять понизители вязкости и поверхност­ного натяжения, если используется недостаточно совершенная система де­газации.

Обычная схема дегазации бурового раствора при интенсивном поступ­лении газа (например, при несбалансированном давлении в скважине) по­казана на рис. 7.17. Газожидкостный поток из скважины 2, дойдя до вра­щающегося превентора 3, через регулируемый штуцер 4 и герметичные манифольды поступает в газовый сепаратор 5, где из раствора выделяется основной объем газа. Очищенный от свободного газа раствор поступает на вибросито 6 и собирается в первой емкости циркуляционной системы. Дальнейшая очистка раствора от газа осуществляется с помощью специ­ального аппарата-дегазатора 7. Окончательная дегазация происходит в про­межуточных емкостях 1 циркуляционной системы с помощью механиче­ских перемешивателей.

Газовый сепаратор, используемый в качестве первой ступени очистки бурового раствора от газа (рис. 7.18), представляет собой герметичный со­суд сравнительно большого объема, оборудованный системой манифольдов, клапанов и приборов.

Буровой раствор из скважины через вращающийся превентор и регу­лируемый штуцер по закрытому манифольду поступает по тангенциально­му вводу 7 в полость газового сепаратора 1, где скорость потока резко снижается. В результате действия инерционного и гравитационного полей происходит интенсивное выделение из бурового раствора газа, который скапливается в верхней части сепаратора и отводится по трубопроводу 5 на факел.

Буровой раствор, очищенный от свободного газа, собирается в нижней

Раствор

ОЧИСТКА БУРОВОГО РАСТВОРА ОТ ГАЗАРаствор + газ Рис. 7.17. Схема дегазации бурового раствора

ОЧИСТКА БУРОВОГО РАСТВОРА ОТ ГАЗА

Газ на факел 6

Буровой

раствор

с газом из

скважины

Вода или пар

Рис. 7.18. Схема газового сепара­тора

Шлам с водой

части газосепаратора, откуда он подается по линии 2 для очистки от шлама на вибросито.

Современные газовые сепараторы, имеющие вместимость 1—4 м3, рассчитаны на давление до 1,6 МПа и устанавливаются непосредственно над первой емкостью циркуляционной системы. Они оборудуются предо­хранительным клапаном 6, регулятором уровня бурового раствора поплав-кого типа 3 и эжекторным устройством 11 для продувки и очистки сепара­тора от накопившегося шлама.

Эжекторное устройство работает следующим образом. Воду, а в зим­нее время пар, пропускают через штуцер эжектора 11, в результате чего в сбросовом патрубке газосепаратора создается разрежение. При открытой сбросовой задвижке 10 скопившийся на дне газового сепаратора шлам 9 вместе с частью бурового раствора устремляется в камеру эжекторного смесителя, подхватывается потоком воды (или пара) и выбрасывается из сепаратора наружу. После очистки полости сепаратора сбросовую задвиж­ку 10 закрывают. Для контроля за давлением внутри сепаратора газовая часть его полости оборудуется манометром 4.

В период интенсивных газопроявлений и задавливания пластов буро­вым раствором в процессе газового выброса, когда сепаратор не в состоя­нии обеспечить разделение газожидкостного высокоскоростного потока, поток из скважины направляют непосредственно на факел. Однако такие ситуации очень редки и считаются аварийными.

Регулятор уровня раствора 3 в полости сепаратора предназначен для того, чтобы исключить попадание газа в сливной патрубок 2 очищенного раствора, так как создаются условия для его постоянного затопленного со­стояния с помощью поплавка 8.

Очищенный от свободного газа буровой раствор обычно поступает на вибросито. Однако при наличии в растворе токсичного газа, например се­роводорода, поток из сепаратора по закрытому трубопроводу сразу подает-

ся на дегазатор для очистки от газа. В этом случае только после оконча­тельной дегазации раствор очищают от шлама.

В качестве второй, а иногда и единственной ступени очистки раствора от газа обычно применяют дегазаторы, которые условно классифицируют на следующие типы: по величине давления в камере — на вакуумные и атмосферные; по способу подачи газированного бурового раствора в камеру — на гравитационные, эжекционные и центробежные. При центробежной подаче бурового раствора используют, как правило, самопродувающиеся центробежные насосы. В вакуумных дегазаторах иногда применяют самозаполняющиеся центробежные насосы.

Наибольшее распространение в отечественной и зарубежной практике получили вакуумные дегазаторы с эжекционной и центробежной подачей газированного бурового раствора. Разрежение в полости таких дегазаторов создается вакуумным насосом и эжектором. Газированный раствор подает­ся в камеру дегазаторов обычно за счет разности давлений между атмо­сферой и вакуумированной камерой. Это не самый эффективный, но очень надежный способ подачи бурового раствора в дегазатор. Обычно центро­бежные насосы для этой цели непригодны вследствие способности «запи­раться» газовыми пробками.

Степень вакуума в камере дегазаторов — наиболее важный техноло­гический фактор дегазации и определяется не только разрежением в каме­ре эжектора и техническими возможностями вакуум-насоса, но и, прежде всего, высотой всасывающей линии. Она должна быть такой, чтобы в ка­мере дегазатора обеспечивался вакуум 0,03 МПа.

Другим важным фактором, влияющим на глубину дегазации бурового раствора в дегазаторе, является длительность нахождения раствора в каме­ре. Чем выше скорость циркуляции раствора в камере дегазатора, тем меньше времени раствор находится в ней и, следовательно, хуже дегазиру­ется. Для улучшения дегазации необходимо уменьшать скорость циркуля­ции бурового раствора. Так, при циркуляции 24 л/с дегазация каждой порции раствора в аппаратах вакуумного типа будет длиться 25 с, а при 48 л/с — около 12 с. Практически полная дегазация бурового раствора в аппаратах вакуумного типа происходит за 10 — 20 с.

Обычно с помощью газового сепаратора удается выделять из бурового раствора десятки кубических метров газа в минуту. В результате на вторую ступень дегазации — в дегазатор — поступает буровой раствор с содержа­нием газа не более 20 %. Некоторые типы вакуумных дегазаторов обеспе­чивают скорость извлечения газа 0,1— 0,25 м3/мин, пропуская буровой рас­твор объемом 1—3 м3/мин. В худшем случае остаточное содержание газа в буровом растворе после обработки в дегазаторе не превышает 2 %.

Типичным представителем дегазаторов вакуумного типа, используемых в отечественном бурении, является дегазатор типа ДВС.

Вакуумный дегазатор представляет собой двухкамерную герметичную емкость, вакуум в которой создается насосом. Камеры включаются в рабо­ту поочередно при помощи золотникового устройства. Производительность дегазатора по раствору достигает 45 л/с, остаточное газосодержание в рас­творе после обработки не превышает 2 %. Привод вакуумного насоса осу­ществляется от электродвигателя мощностью 22 кВт.

Центробежно-вакуумный дегазатор ЦВА (рис. 7.19) состоит из цилинд­рического вертикально установленного корпуса 1, 2, внутри которого с вы­сокой частотой вращается вал 4 с ротором 10, подобным рабочему колесу

ОЧИСТКА БУРОВОГО РАСТВОРА ОТ ГАЗА

Рис. 7.19. Центробежно-вакуумный дегазатор ЦВА:

1, 2 — части корпуса; 3 — труба; 4 — âàë; 5 — îñåâàÿ òóðáèíà; 6 — клапан; 7 — пластинчатый деструк­тор; 8 — вентилятор; 9 — патрубки для отвода газа; 10 — ротор; И, 12 — подшипники

центробежного насоса с загнутыми назад лопатками. Поступающий в ЦВА газированный буровой раствор интенсивно разбрызгивается ротором тон­ким слоем внутри корпуса и дегазируется. Дегазированный раствор пере­качивается обратно в ЦС с помощью осевого насоса, а выделившийся из раствора газ отводится вентилятором 8 по отводным каналам наружу.

Центробежно-вакуумный аппарат типа ЦВА обеспечивает не только эффективную дегазацию буровых растворов, но и интенсивное перемеши­вание входящих в него жидких и твердых компонентов (табл. 7.15).

В используемых в зарубежной практике атмосферных аппаратах дега­зация бурового раствора происходит в результате турбулизации тонкого плоского потока. Обычно раствор в дегазатор такого типа поступает при подаче насоса примерно 35 л/с, чтобы скорость течения на входе в дегаза­тор составляла примерно 1 м/с. В камере дегазатора имеется система на­клонных плоских перегородок, по которым стекает, периодически завихря-ясь, буровой раствор (рис. 7.15). Толщина слоя раствора на перегородках 10— 15 мм, а длина пути раствора 3,5 м.

Дегазаторы такого типа недостаточно эффективны при использовании растворов с повышенными значениями плотности, вязкости и СНС. Иссле-

Таблица  7.15

Техническая характеристика ЦВА

 

Плотность раствора, г/см3

Условная вязкость раствора, с

Содержание газа в растворе, %

до ЦВА

после ЦВА

до ЦВА

после ЦВА

до ЦВА

после ЦВА

1,38 1,36 1,34 1,38 1,39

1,42 1,40 1,43 1,40 1,42

105 100 108 102 97

63 55 59 60 52

9 8 12 5 7

о ооо о

ОЧИСТКА БУРОВОГО РАСТВОРА ОТ ГАЗА

 

Рис. 7.20. Схема атмосферного дегазатора

/м/с

дования показали, что даже при многократной дегазации таких растворов полного удаления газа из раствора достичь не удается.

Отечественной  промышленностью  широко  используется  вакуумный дегазатор ДВС.

Обратите внимание:

Добавить комментарий