Архив рубрики: измерение давления, расхода, жидкости, газа и пара

5.3. Косвенные методы, основанные на изменении физических свойств измеряемой среды

Для определения давления находят также применение методы, ос­нованные на зависимости от давления различных физических свойств жидкостей и газов и протекающих в них процессах. При этом были использованы результаты исследований влияния давления на плотность и вязкость, диэлектрическую проницаемость, скорость распространения ультразвука, теплопроводность и другие свойства измеряемой среды.

В области высоких и средних давлений указанные методы широкого распространения не получили в связи с их относительной сложностью и трудоемкостью по сравнению с другими методами (применение манга­нинового манометра сопротивления в области высоких давлений, пря­мые методы измерений в области средних давлений).

В области вакуумных измерений указанные методы применяются практически повсеместно. Зависимость теплопроводности разреженно­го газа от давления используется в тепловых" и термопарных маномет­рах; зависимость тока положительных ионов от измеряемого давле­ния — в ионизационных манометрах. Используется также зависимость от давления вязкости газа, кинетической энергии молекул, концентра­ции молекул и пр.

К контрольному вопросу № 9

Вы правильно ответили на вопрос. Метод косвенного из­мерения давления путем предварительного сжатия газа не зави­сит от манометра, которым измеряется давление сжатого газа.

Наибольшее распространение в вакуумной технике (около 70 %) получили термопарные и ионизационные манометры.

Термопарный манометр (рис. 54, а) так же, как и тепловой, основан на зависимости теплопроводности разреженного газа от давления. Мано­метр содержит стеклянную или металлическую колбу 3, в которой поме­щены нагреватель 1 и впаянная в него термопара 2. Нагреватель питается от источника переменного тока, и его температура, а следовательно, и температура термопары, определяется теплоотдачей в окружающий раз­реженный газ. Чем меньше давление газа, тем меньше его теплопровод­ность и тем больше температура, а следовательно, ЭДС на выходе термо­пары, которая и является мерой измеряемого давления. Шкала прибора 4 для измерения ЭДС градуируется, как правило, в единицах давления. Данный принцип наиболее эффективен при давлениях от 0,1 до 100 Па. При давлениях, меньших 0,1 Па, все большая доля тепла передается излу­чением, а при давлениях, больших 100 Па, увеличение теплопроводности газа резко замедляется. В обоих случаях существенно уменьшается чув­ствительность прибора. Погрешность измерений составляет 10—30 %. На градуировочную характеристику существенно влияет состав газа. Поэтому для уточнения показаний термопарного манометра необходима индивидуальная градуировка.

5.3. Косвенные методы, основанные на изменении физических свойств измеряемой среды

Принцип действия ио­низационного манометра основан на зависимости от давления тока положитель­ных ионов, образованных в результате ионизации раз­реженного газа. Ионизация газа осуществляется элект­ронами, ускоряемыми электрическим или магнит­ным полями, а также по­средством излучения ра­диоизотопов. При одном и том же количестве электро­нов, пролетающих через газ, или постоянной мощ­ности излучения степень ионизации газа пропорцио­нальна концентрации его молекул, т. е. измеряемо­му давлению.

Рис. 54. Термопарный манометр

В простейшем случае наиболее употребим иони­зационный манометр с го­рячим   катодом   (рис.  54,

б), содержащий стеклянную колбу 2, в которую впаяны анод 1 и катод 3. Благодаря разогреву катода источником постоянного тока 4, его по­верхность испускает электроны, которые разгоняются напряжением £/а
между катодом и анодом -и ионизируют находящийся между ними газ. Сила тока положительных ионов, измеряемая гальванометром 5, является мерой измеряемого давления

5.3. Косвенные методы, основанные на изменении физических свойств измеряемой средыгде к — постоянная, зависящая от конструкции прибора и состава газа. Для увеличения степени ионизации между катодом и анодом поме­щена сетка, на которую подается напряжение, сообщающее дополнитель­ное ускорение потоку электронов. Манометры этого типа охватывают диапазон от 10~7
до 1 Па, дополняя диапазон измерений термопарного манометра. Погрешности измерений составляют также 10—30 %.

Контрольный вопрос № 10

Зависят ли показания термопарного вакуумметра от физи­ческих свойств газов, давление которых необходимо измерить? Если „да" — см. с. 125, если „нет" — см. с. 127.

5.2. Косвенные методы, основанные на фазовых переходах

Известно, что любое вещество в зависимости от давления и темпера­туры может находиться в различных агрегатных состояниях (твердой, жидкой и газообразной фазах). Типовая диаграмма состояний в коорди­натах р и Т представлена на рис. 52. Кривыми линиями изображены гра­ницы между различными фазами (кривые равновесия фаз), соответству­ющие давлениям и температурам, при которых из одной фазы в другую переходит одинаковое число молекул. При этом кривая СК выражает

5.2. Косвенные методы, основанные на фазовых переходах

К

Рис. 52. Типовая диаграмма состояний

зависимость от температуры давления насыщенного пара над жидкостью; кривая АС — давления насыщенного пара над твердым телом, кривая ВС — температуры плавления от давления. Например, при давлении р\ и температуре Т1 будет наблюдаться равновесие твердой 1 и газообраз­ной 2 фаз. Если при той же температуре Тг давление понизить, то начнет­ся переход твердой фазы в газообразную. Этот процесс называется возгон­кой или сублимацией („сублимаре" — возносить). Аналогично на грани­це ВС происходит плавление твердой фазы (кристаллизация жидкой фа­зы 5), а на границе СК — кипение жидкой фазы (конденсация газообраз­ной фазы). Необходимо отметить также две особые точки. Тройная точ­ка С, находящаяся на пересечении всех трех кривых равновесия фаз, ха­рактеризует состояние вещества, когда находятся в равновесии одновре­менно твердая, жидкая и газообразная фазы. Критическая точка А" соот­ветствует критической температуре Тк и критическому давлению рк, при которых теряется всякое различие между жидкостью и ее паром, а граница между ними исчезает.

Указанные выше кривые равновесия фаз и тройная точка использу­ются в косвенных методах определения давления по результатам изме­рения температуры в равновесных точках (в области температурных измерений, наоборот, температура определяется по результатам измере­ния давления).

Диаграмма состояний дает наглядное представление о выборе того или иного фазового перехода в зависимости от определяемого давления. Кривая плавления ВС немного отклоняется от вертикали к оси абсцисс, т. е. температура плавления имеет небольшую чувствительность к давле­нию. Так, температура плавления льда изменяется на 1 К при изменении давления на 13 МПа (следует отметить, что в отличие от большинства веществ температура плавления льда понижается при повышении давле­ния — штриховая линия СВ на рис. 52). Поэтому кривые плавления ис­пользуются в косвенных методах определения высоких и сверхвысо­ких давлений. Процесс сублимации (кривая Л С) происходит, как прави­ло, при низких температурах и давлениях, что позволяет его использо­вать при определении давления в области вакуумных измерений. И, на­конец, фазовый переход жидкость—пар (кривая СК) наиболее удобен для области средних давлений. Помимо указанного, при выборе того или иного фазового перехода необходимо учитывать физические свой­ства применяемого вещества.

В области измерения высоких и сверхвысоких давлений его значение воспроизводится по кривой плавления ртути, полузмпирическое уравне­ние которой получают по результатам исследований сравнением с эталон­ным поршневым манометром. Это позволяет построить непрерывную шкалу давлений, по которой градуируются средства измерений высоких и сверхвысоких давлений низшей точности.

К контрольному вопросу № 9

Вы ответили неверно. В жидкостном манометре измеряе­мое давление определяется высотой столба жидкости. В ком­прессионном манометре измеряемое давление предварительно многократно увеличивается в отношении объема сосуда к объе­му капилляра (закон Бойля-Мариотта), что в основном н опре­деляет принцип действия прибора.

Прочтите более внимательно разд. 2.3.

В нашей стране (НПО „ВНИИФТРИ") разработана шкала давлений, основанная на кривой плавления ртути (КПР-83), которая охватывает диапазон давлений от 100 до 4000 МПа. Погрешность воспроизведения давления 0,05 % в диапазоне от 100 до 1500 МПа; 0,5 % — до 2500 МПа и 1%-до 4000 МПа.

Полученная точность полностью удовлетворяет в настоящее время потребности науки и техники. Значение шкалы передано группе образцо­вых манганиновых манометров сопротивления, погрешность которых составляет ±0,5 % при давлении до 2,5 ГПа и ±2 % при давлениях до 4 ГПа. В перспективе этот метод позволит создать эталон — свидетель го­сударственного эталона высоких давлений нашей страны.

В области средних давлений, где успешно применяются высокоточ­ные средства измерений, основанные на прямых методах, использование косвенных методов нецелесообразно. Однако представляет интерес по­лучивший распространение в первой половине нашего века простой спо­соб измерения атмосферного давления, основанный на фазовых перехо­дах „жидкость—пар" (кривая СК на рис. 52), который легко может быть продемонстрирован в любой, даже школьной, лаборатории.

Прибор — гипсотермометр (рис. 53) состоит из термометра 1, сосу­да с дистиллированной водой 2 и нагревателя 3. При кипячении воды в

5.2. Косвенные методы, основанные на фазовых переходах

сосуде давление насыщенных паров над ее поверхностью благодаря отверстиям на наружной стенке горловины вырав­нивается с давлением окружающего воз­духа. Взаимосвязь между давлением и температурой на кривой парообразова­ния наиболее полно отображается уни­версальным уравнением проф. М.К. Жо-ховского, которое охватывает весь про­цесс фазовых переходов жидкость—пар от тройной точки .до критической точки (см. рис. 52). Указанное уравнение при­менимо также для описания процессов плавления и сублимации. В узком диапа­зоне давлений (975—1025 гПа), в преде­лах которого находится атмосферное давление на равнинных местностях, для упрощенных расчетов применяют прос­тую формулу, принимая прямую пропор­циональность температуры кипения атмо­сферному давлению. Упрощенная форму­ла имеет вид

p=Po+k(t-to),          (5.10)

///7//////.

где t — температура кипения воды; t0 = = 100°С; ро = Ю13 гПа (760 мм рт.ст.); к = 35,5 гПа/°С (26,7 мм
рт.ст./°С).

Рис. 53. Гипсотермометр

Из формулы (5.10) следует, что по­грешность измерения температуры At = = 0,01°С приводит к погрешности изме­рения давления Ар = 0,4 гПа (0,3 мм рт.ст.). Это примерно соответству­ет точности ртутных барометров. Однако, учитывая приближенность уравнения (5.10), гипсотермометр необходимо проградуировать по об­разцовому барометру соответствующей точности (Ар < 0,1 мм рт.ст.). Следует также отметить, что в данном случае равновесие фаз в строгом понимании отсутствует, так как пары воды непрерывно рассеиваются в окружающее пространство.

5.1. Косвенные методы, основанные на уравнении состояния идеального газа

Связь между важнейшими термодинамическими параметрами газа определяется соотношением

-^-= const,                         (5.1)

т

где р — абсолютное давление газа; Т — абсолютная температура газа; V — объем, занимаемый газом.

Соотношение (5.1) называется объединенным газовым законом и формулируется следующим образом: при постоянной массе газа произ­ведение объема на давление, деленное на абсолютную температуру газа, есть величина, одинаковая для всех состояний этой массы газа.

Уравнениечюстояния для произвольной массы идеального газа (урав­нение Клайперона-Менделеева),имеет вид

pV=JO- -RT,                         (5.2)

где m — масса газа; ц — масса одного киломоля газа; R — универсальная газовая постоянная.

Для упрощения процесса измерения давления один из параметров со­стояния или V) сохраняется постоянным. Тогда давление однозначно определяется по результатам измерения V или Т. Например, при измере­нии изменений атмосферного давления в баронивелировании нашли при­менение газовые барометры, принцип действия которых основан на ис­пользовании уравнения состояния газа (5.1) при постоянной температу­ре. В этом случае уравнение (5.1) принимает вид (законБойля-Мариотта).

Pi Vi —P-lV-i = const,              (5.3)

т. е. при постоянной массе газа и неизменной температуре давление об­ратно пропорционально занимаемому газом объему.

Принципиальная схема газового барометра конструкции Штриплин-га изображена на рис. 50, а. Прибор состоит из двух камер, одна из кото­рых 2 может быть сообщена с атмосферным давлением, а другая 3 зам­кнута. Обе камеры связаны между собой капилляром, в середине кото­рого находится капля масла 1, выполняющая роль указателя нуля. При равенстве давлений в камерах капля устанавливается на нулевой отмет­ке. Равенство давлений достигается изменением объема камеры 3 посред­ством перемещения сильфона 4 с помощью винта и червячной передачи с отсчетом числа оборотов червяка по цифровому счетчику. При погреш­ности термостатирования 0,001° С изменения давления фиксируются с погрешностью менее 0,5 Па.

В соответствии с формулой (5.3) изменение давления по сравнению с давлением Во может быть определено из соотношения

5.1. Косвенные методы, основанные на уравнении состояния идеального газа

где ff0 — атмосферное давление в момент его подачи в камеру 2 (установка нуля) при предварительном уравновешивании; Vo — объем камеры 3 при давлении Во; AV — изменение объема камеры 3, необ­ходимое для достижения равновесия при изменении атмосферного давления АВ.

При AV «^С Vo изменение объема ка­меры практически пропорционально из­менению атмосферного давления.

JLI

В дифференциальном газовом баро­метре системы Д.И. Менделеева (рис. 50, б) изменение атмосферного дав­ления определяется комбинированным методом. Барометр состоит из замкнуто­го сосуда 1, соединенного с давлением ок­ружающего воздуха при помощи V-образ-ного жидкостного манометра 2. Измене­ние атмосферного давления при AF« Vo определяется по формуле

 (5.5)

 = Н • р

Рис 50. Принципиальная схема га­зового барометра

где Н — высота столба жидкости;  р — плотность жидкости, заполняющей мано­метр;   g — ускорение свободного паде­ния; /— площадь сечения манометрической трубки; Fo — объем замкну­того сосуда 1; Во — атмосферное давление при предварительном уравно­вешивании (Я = 0).

Как видно из формулы (5.5), барометр основан на уравновешива­нии изменений атмосферного давления как столбом жидкости, так и сжатием (расширением) газа в замкнутом сосуде по закону Бойля-Мари-отта (5.3). Как и ранее, необходимо тщательное термостатирование со­суда 1 или введение температурной поправки, равной 0,37 % на 1°С.

Следует отметить, что рассмотренные выше газовые барометры в связи с появлением высокоточных деформационных барометров анало­гичного назначения в настоящее время практически не применяются. В отличие от этого в области вакуумных измерений указанный принцип на­ходит широкое применение. Компрессионные („компрессия" — сжатие) и экспансионные („экспансия" — расширение) манометры являются ос­новными средствами воспроизведения и передачи единицы давления в области вакуумных измерений в диапазоне от 10~3 до 103 Па (10"s — 10 мм рт. ст.).

Принципиальная схема компрессионного манометра, представленная на рис. 51, была предложена Мак-Леодом еще в 1874 г. Манометр состоит из стеклянного сосуда 4, в верхнюю часть которого впаян измеритель­ный капилляр 3. По трубке 1 сосуд 4 сообщается с вакуумной системой,

5.1. Косвенные методы, основанные на уравнении состояния идеального газа

в которой измеряется дав­ление газа. Заполненный ртутью резервуар 7 присо­единен к прибору гибким шлангом 6 и трубкой 5. Па­раллельно измерительному капилляру 3 к трубке 1 припаян сравнительный ка­пилляр 2.

Перед измерением дав­ления р в вакуумной систе­ме резервуар 7 опускается до тех пор, пока мениск ртути в трубке 5 не распо­ложится ниже уровня I—I (рис. 51, а). При этом дав­ление газа в сосуде 4 будет равно давлению в вакуум­ной системе. Ввиду малос­ти измеряемого давления высота столба ртути Я прак­тически соответствует ат­мосферному давлению В, действующему на поверх­ность ртути в резервуаре 7, причем высота столба рту-Рис. 51. Принципиальная схема компрессионного  ти не
изменяется, т. е. при

манометра

 любом положении резерву­ара   остается   постоянной. При измерении давле­ния ртуть посредством подъема резервуара достигает уровня I—I и отсо­единяет сосуд 4 от вакуумной системы. Дальнейший подъем ртути про­изводят до совмещения мениска ртути в капилляре 3 с нулевой отмет­кой (рис. 51, б). При этом в соответствии с законом Бойля-Мариотта (5.3) давление в незаполненной части капилляра 3 станет равным

•р,

где V — объем сосуда 4 вместе с капилляром;

 VK =

(5.6) • / — объем

части капилляра, расположенной выше нулевой отметки; lad — длина и диаметр внутреннего сечения капилляра.

Принимая во внимание, что давление р в вакуумной системе при этом не изменяется, получим

vjv

(5.7)

• h • р • g,

1 — VJV

где h — разность уровней ртути в капиллярах 2 и 3.

Отсюда следует, что чувствительность манометра тем больше, чем меньше отношение VK/V или больше отношение V/VK. Однако суще­ствуют определенные ограничения. Так, внутренний диаметр капилляра dmin — 0,5 мм, исходя из условий получения отверстия правильной ци­линдрической формы по всей длине канала, а с другой стороны, объем сосуда Vmax = 500—1000 см3, так как при этом масса заключенной в нем ртути составит т = 7—14 кг, что лимитирует, исходя из соображений, прочность сосуда. Поэтому, как правило, V/VK < (2,5—5) • 104.

Экспансионные манометры (установки с калиброванными объема­ми) в отличие от компрессионных основаны на понижении известного давления от требуемого значения. Для этого в сосуде с относительно не­большим объемом Vi создается давление, достаточное для точных изме­рений.

Затем с помощью вентиля этот сосуд соединяется с предварительно откачанным сосудом, объем которого V2 существенно больше объема Vi. При этом согласно (5.5) давление понизится в отношении начального и конечного объемов

р*т-фгтр1^х"Р1′                               (5-8)

Установки с компрессионным и зкспансионным манометрами, до­полняя друг друга, обладают наивысшей в области вакуумных измере­ний точностью. Они включены в состав государственного специального эталона в области низких абсолютных давлений (от 10~8 до 103
Па), а также в национальные эталоны других стран.

Для определения давления применимо также уравнение состояния газа при постоянном объеме (изохорический процесс). В этом случае уравнение состояния (5.2) принимает вид (закон Шарля, 1787 г.)

р=к-Т,                                   (5.9)

,         m-R
где к =—— постоянная.

м V

Из уравнения (5.9) следует, что при постоянной массе газа и неиз­менном объеме давление газа прямо пропорционально его абсолютной температуре. Однако, несмотря на предельную простоту метода, его реа­лизация связана с необходимостью применения довольно сложных ав­томатических систем для приведения температуры в соответствие с из­меряемым давлением, что осложняется инерционностью процесса нагре­ва (охлаждения) газа. Поэтому этот метод практического применения не нашел.

Контрольный вопрос № 9

Относится ли по принципу действия компрессионный ртут­ный манометр к жидкостным манометрам? Да или нет? Если „да", то см. с. 121, если „нет" — см. с. 123.

4.6. Перспективы развития деформационных манометров

По принципу действия деформационные манометры требуют для своей градуировки применения методов и средств, основанных на абсо­лютных методах воспроизведения давления. Повышение их точности, в принципе, ограничено точностью применяемых при градуировке жид­костных и поршневых эталонов, которая характеризуется погрешностя­ми порядка 1 • 10~5 — 5 • 10~5. Это позволило уже в настоящее время создать образцовые деформационные манометры, погрешности которых не превышают 2,5 • 10~4 -5 • 10~4
(0,025-0,05 %). Дальнейшее повы­шение точности деформационных манометров в связи с их недостаточно высокой долговременной стабильностью возможно лишь при условии периодической корректировки показаний в процессе эксплуатации, что может быть достигнуто как путем периодического сравнения показаний деформационного манометра с показаниями точного и стабильного пор­шневого манометра, так и другими способами. Например, фирмой „Druck Ltd" (Англия), для этих целей разработан цифровой манометр типа DPJ501, в котором аналоговые выходные сигналы полупроводни­кового датчика давления автоматически корректируются вибрационно-частотным датчиком давления типаNT3080фирмы „Solartron" (Англия). При этом погрешность измерения не превышает 0,015 %.

Одно из важнейших направлений развития точных деформационных манометров — разработка портативных образцовых переносных мано­метров, пригодных для контроля рабочих средств измерений на месте их эксплуатации. Так, на основе полупроводниковых датчиков давления и современной электроники фирмой „Druck Ltd" разработан переносной образцовый манометр типа DPJ600 класса точности 0,1, модификации которого предназначены для измерения избыточного давления в диапазо­нах от 0-7,5 кВ до 0-7 МПа; абсолютного давления от 0-35 кПа до 0-3,5 МПа и разности давлений от 0—7,5 до 0—1000 кПа. Погрешность, вы­зываемая совместным влиянием нелинейности, гистерезиса и воспроиз­водимости, не превышает ±0,1 % для диапазонов до 3,5 МПа и ±0,2 % для диапазонов до 7 МПа. Дискретность цифрового отсчета 5 • 10~5 (0,005 %). Температурный коэффициент чувствительности не превышает 0,02 %/°С. Габаритные размеры ЗО5Х180Х110 мм, масса 4 кг.

Переносной манометр содержит переключатели единиц измерений и диапазонов измерений, ручной насос, регулятор объема, корректор ну­ля и штуцер для подключения измеряемого давления. Питание прибора осуществляется от батареек напряжением 12 В или от внешнего источни­ка питания.

Однако, основное назначение деформационных манометров состоит в удовлетворении потребностей различных отраслей промышленности в измерении давления, так как в каждой отрасли существуют свои тре­бования к условиям эксплуатации, формам представления информации, точности и надежности, необходимым габаритным размерам и массе, стоимости приборов и пр.

Все это требует совершенствования различных параметров и свойств деформационных манометров, специфика которых определяется их на­значением и принципом действия.

К контрольному вопросу № 8

Вы правильно ответили на вопрос. Несмотря на сведение к минимуму нелинейности УЧЭ, необходимо принимать во внима­ние нелинейность цепи обратной связи и в первую очередь — не­линейность силового электромагнита.

Выпускаемые десятками миллионов штук общепромышленные стре­лочные деформационные манометры с механическим преобразованием давления, требования к точности которых относительно невысоки (6р > > 1 %), в конструктивном отношении радикальной модернизации не тре­буют. Основная задача состоит в повышении качества изготовления с целью достижения долговечности и надежности и, в первую очередь, улучшении таких метрологических характеристик деформационных манометров, как нелинейность и вариация показаний. Необходимо так­же дальнейшее совершенствование материалов УЧЭ с целью понижения их чувствительности к изменениям температуры.

Деформационные манометры, основанные на электрических мето­дах преобразования (индуктивные, емкостные и др.), обеспечивая доста­точно высокую точность, нуждаются в совершенствовании методов защи­ты их электрических цепей от воздействия внешних электрических и магнитных полей, особенно при необходимости размещения на расстоя­нии УЧЭ и электроники.

Дальнейшее развитие получают металлические и полупроводниковые тензорезистивные деформационные манометры.

Фирмой „Statham Instr" (США) разработаны тонкопленочные ме­таллические резистивные датчики Р1000, способные без регулировки стабильно работать в условиях бурения в море в течение более 5 лет. Технология изготовления тензорезистора основана на напылении в ваку­уме металлической пленки на керамическую подложку, предварительно нанесенную на мембрану из нержавеющей стали. Датчик защищен от воз­действия внешней среды двойным корпусом, приваренным к основанию.

Технология изготовления кремниевых полупроводниковых тензо-датчиков в настоящее время отработана достаточно хорошо и ее совер­шенствование будет продолжаться по мере развития микроэлектроники. Однако при температуре выше 200е
С полупроводниковый кремний те­ряет свою тензочувствительность, превращаясь в обычный проводник, что не допускает их применение в условиях высоких температур (внутри работающих автомобильных и реактивнйгс двигателей, в буровых уста­новках глубокого бурения и пр.). Весьма перспективна для этих целей замена кремния на карбид кремния (карборунд). В настоящее время уже созданы транзисторы из карбида кремния на подложке из его окис­лов, нанесенной на металлическую мембрану. Полупроводниковые свой­ства такого тензорезистора при температуре 650 С аналогичны свойст­вам обычного кремниевого тензорезистора при температуре 20°С.

В настоящее время проводятся также разра тки полупроводнико­вых тензорезисторов, предназначенных для работы в условиях низких температур (сверхпроводящие магнитные системы термоядерных уста­новок, криогенные накопители энергии;" реактивные двигатели на сжи­женном водороде и пр.) в диапазоне от 2 до 100 К (от —271 до — 173° С). В этих условиях чистые полупроводники превращаются в диэлектрики. Введение в кремний примесей позволяет сохранить тензочувствитель-ность, хотя она существенно снижается. В нашей стране разработан дат­чик такого типа. Основанный на структуре КНС датчик „Криос ДА" наи­более перспективен в диапазоне давлений от 0,1 до 10 МПа. Основная по­грешность 1 %, дополнительная погрешность не превышает 2 % в диапазо­не 4—77 К и 4 % — в диапазоне температур 77—300 К.

К контрольному вопросу № 8

Вы ошиблись. Силовая компенсация позволяет существен­но уменьшить нелинейность УЧЭ. Однако при этом не устраняет­ся нелинейность цепи обратной связи, величина которой доходит до 50 % предела основной допускаемой погрешности.

Вам следует еще раз просмотреть разд. 4.3.

В связи с широким внедрением ЭВМ в системы контроля, регулиро­вания и управления производственными и технологическими процессами наметилась тенденция разработки совместных с ними миниатюрных мик­ропроцессорных аналого-цифровых преобразователей, встроенных в по­лупроводниковые датчики (например, датчик ST-3000 с погрешностью 0,1 %, разработанный американской фирмой „Honeuwell". Однако указанное не исключает дальнейшее развитие современных относитель­но дешевых полупроводниковых датчиков.

4.5. Манометры с силовой компенсацией

Все рассмотренные выше деформационные манометры основаны на методе прямого преобразования давления (см. рис. 32, а). Метод урав­новешивающего преобразования давления (см. рис. 32, б), хотя и менее распространен в технике измерения давления, но продолжает сохранять заметную роль в некоторых отраслях промышленности, в которой на­ходят применение манометры с силовым уравновешиванием двух типов: уравновешивание измеряемого давления пневматическим давлением (пневматическая силовая компенсация); уравновешивание измеряемого давления электромагнитными силами (электромагнитная силовая ком­пенсация) .

При этом во время уравновешивания силы, возникающей в первич­ном ЧЭ под действием измеряемого давления, силой, развиваемой цепью обратной связи, происходит незначительное перемещение первичного ЧЭ, независимо от. его жесткости, что позволяет в широких пределах варьи­ровать чувствительность измеряемой системы.

К контрольному вопросу № 7

Вы плохо усвоили принцип действия полупроводниковых преобразователей давления. Еще раз внимательно просмотрите разд. 4.4.

Манометры с пневматической силовой компенсацией. Принципиаль­ная схема манометра (преобразователя давления) с пневматической си­ловой компенсацией представлена на рис. 47. Измерительная система преобразователя состоит из сильфона 1, жестко связанного с рычагом 2, второй конец которого выполнен в форме плоской заслонки. Система обратной связи содержит сопло 3, которое перекрывается заслонкой при повороте рычага 2, дросселя 6 и сильфона 7, жестко связанного с рыча­гом, вдоль которого может передвигаться установочный ролик 8.

При воздействии измеряемого давления рк жидкости или газа на сильфон 1 возникает сила, стремящаяся повернуть рычаг 2 и тем самым прижать заслонку к соплу 3, которое с помощью дросселя 4 сообщено с источником давления питания. Благодаря этому давление в системе об­ратной связи повышается и после усилителя поступает в сильфон 7, свя­занный с рычагом и пружиной 5, развивая посредством установочного ролика 8 уравновешивающее усилие на рычаг 2. Давление, которое необ­ходимо для достижения равновесия измерительной системы, пропорцио­нально измеряемому давлению, причем коэффициент пропорциональнос­ти определяется эффективными площадями сильфонов 1 и 7 и соотноше­нием плеч рычагов. Этим достигается соответствие диапазона измеряемо­го давления ри диапазону выходного давления воздуха рВых» который

Рпит

4.5. Манометры с силовой компенсациейРёых

Рис. 47. Схема преобразователя давления с пневмати­ческой силовой компенсацией

составляет. 20—100 кПа (стандартный выходной пневматический сиг­нал).

В нашей стране выпускается преобразователь разности давлений типа 13ДД11 (рис. 48). Измерительная система преобразователя содер­жит основание 1, к которому фланцами герметично, прикреплены раз­делительные мембраны 9. Центры мембран жестко соединены стерж­нем 10, в прорезь которого помещен нижний конец рычага 2 с пружиной 4, закрепленного на упругой опоре 3. Внутренняя полость основания 1 между мембранами 9 заполнена кремнийорганической жидкостью.

При подаче на разделительные мембраны измеряемой разности дав­лений на нижний конец рычага со стороны стержня действует сила, стре­мящаяся повернуть рычаг, верхний конец которого с помощью заслонки 5 увеличивает сопротивление при истечении сжатого воздуха из сопла 6, питаемого давлением РпиТ =140 кПа через постоянный дроссель. Бла­годаря этому давлению воздуха в цепи обратной связи, усиленное пнев-мореле 7, увеличивается до тех пор, пока усилие со стороны сильфона 8 не уравновесит усилие со стороны измеряемого давления. При достиже­нии равновесия измерительной системы измеряемая разность давлений определяется выходным давлением £>вых-

Преобразователи предназначены для эксплуатации при температуре окружающего воздуха от —50 до +80°С. Пределы допускаемой основной погрешности 0,6 и 1,0 %, верхние пределы измерений разности давлений в зависимости от модификации колеблются от 1 до 630 кПа при рабочем избыточном давлении от 2,5 до 40 МПа. Масса прибора от 5,2 до 14 кг, габаритные размеры от 197Х155Х100 до ЗООХ188Х140 мм. Достоинство преобразователя — его практически полная взрывобезопасность.

Рпит

4.5. Манометры с силовой компенсацией

Аналогичные по своим ха­рактеристикам   преобразовате­ли  с пневматической силовой компенсацией   для  измерения абсолютного    и    избыточного .^       давления и разности давлений РВых  выпускаются   и   зарубежными фирмами „Siemens", „Guide — Regelarmafurer"   (ФРГ)   и др.

К контрольному вопросу №7

Материал разд. 4.4 Вами усвоен. Продол­жайте дальнейшее изуче­ние учебника.

Рис. 48. Преобразователь разности давлений типа 13ДД-11

Манометрические приборы с силовым электромагнитным уравновешиванием отличаются от всех других типов, рассмот­ренных ранее, тем, что в них путем использования обратной связи происходит сравнение электрической выходной вели­чины с входной механической. Следовательно, достигается со­стояние равновесия меэвду входной силой, возникающей в результате воздействия давле­ния на УЧЭ, и противоположно направленной силой, создавае­мой электрическим током, зна­чение которого является мерой

давления. Обладая очевидными достоинствами (долговременная стабиль­ность, практическая независимость статических и динамических характе­ристик от других характеристик УЧЭ), преобразователи с силовым урав­новешиванием имеют обычно относительно большие размеры и массу. Этим, в основном, объясняется их замена датчиками других типов во многих отраслях промышленности. Однако в тех областях науки и тех­ники, где требуется высокая точность измерений, эффективность приме­нения манометрических приборов с электромагнитной силовой компен­сацией не вызывает сомнений.

В нашей стране серийно выпускаются измерительные преобразовате­ли давления типа ИОД, предназначенные для прецизионных измерений в системах автоматического контроля, регулирования и управления тех­нологическими процессами. Преобразователь (рис. 49) состоит из чувст­вительного элемента (сильфона) 5, рычага 3 с опорой 4, двух механиз-

4.5. Манометры с силовой компенсацией

4.5. Манометры с силовой компенсацией

Рис. 49. Преобразователь давлении типа ИПД

мов обратной связи 7 и 7, индикатора рассогласования 6 дифференциаль­но-трансформаторного типа, нагрузочного устройства 2 и блока усилите­ля &

Преобразователь работает следующим образом. В чувствительный элемент 5 подается измеряемое давление, который преобразует это дав­ление в усилие, передаваемое на рычаг 3, что приводит к перемещению рычага и связанного с ним плуншера индикатора рассогласования 6. Ин­дикатор преобразует перемещение в управляющий сигнал переменного тока поступаюидай на вход блока усилителя 8, который преобразуется в выходной сигнал постоянного тока. Последний поступает одновремен­но в обмотки катушек силовых механизмов обратной связи 1 и 7 и на блок резисторов 11, преобразующих выходной сигнал усилителя в вы­ходной сигнал преобразователя в виде напряжения постоянного тока. В силовом механизме взаимодействие поля постоянного магнита с маг­нитным полем, которое создается током усилителя 8> протекающим по обмотке подвижной катушки, создает пропорциональное этому току усилие Обмотки катушек силовых механизмов 1 и 7 включены в проти­воположном направлении, поэтому моменты развиваемых ими сил скла­дываются и уравновешивают момент силы, создаваемый чувствительным элементом на плече L.

Прео разователь позволяет производить его самопроверку в процес­се эксплуатации. При этом нижний предел измерений корректируется при нулевом значении давления путем сообщения чувствительного эле­мента с атмосферой, а верхний предел измерений — наложением на рычаг 3 калибровочного шарика нагрузочного устройства 2.

Питание преобразователя производится от сети переменного тока на­пряжением 220 В понижающим трансформатором 9 и источником стаби­лизированного питания 10.

Модификации преобразователей позволяют измерять как избыточ­ное давление (рис. 52, а), так и разность давлений (рис. 52, б). В послед­нем случае измерительный механизм преобразователя помещается в гер­метичный корпус 13, в присоединительный штуцер которого подается меньшее из измерительных давлений.

Преобразователь в комплекте с блоком индикации 12 применяется в качестве образцового показывающего манометра с цифровым отсче­том.

Расчетное цифровое показание* блока индикации, соответствующее измеряемому давлению, определяется по формуле

•  II = U       •       Р~Pmin                                     (4 IT)

Ртах ~ Pmin

где С/щах — цифровое показание блока индикации, соответствующее верх­нему пределу измерений измеряемого давления; р — значение измеряе­мого давления; ртах
— верхний предел измерений; рт^ — нижний пре­дел измерений (для всех модификаций, кроме модификации с диапазо­ном измерений 20—100 кПарт^ = 0). Основные метрологические харак­теристики манометров ИПДЦ:

верхние пределы измерений от —10 до —100 кПа для вакуумметров; от 6 кПа до 16 МПа для манометров;

предел допускаемой основной погрешности от ±0,06 до ±0,25 % (в зависимости от диапазона измерений);

зона нечувствительности не превышает 0,01 %\

изменение показаний от влияния температуры не более 0,01 % на

icq

габаритные размеры преобразователя 100X468X220 мм, цифрового вольтметра Щ304 61X219X310, масса 16 кг.

Ограниченный объем книги не позволяет рассмотреть многие другие типы деформационных манометров, сведения о которых имеются в тех­нической литературе по технике измерения давления.

Контрольный вопрос № 8

Имеет ли место нелинейность статической характеристики в деформационных манометрах с силовой компенсацией? Да или нет?

Если „да" — см. с. 114, если „нет" — см. с. 115.

* Отсчет показаний производится по табло цифрового вольтметра.