Все гидродинамические эффекты (спускоподъемные операции, промывка ствола скважины, его проработка, спуск обсадной колонны, цементирование последней и т.д.) наблюдаются при бурении скважины и вскрытии продуктивных пластов. Если в первом случае нас интересует безаварийная проводка скважины с минимумом затрат времени и средств, то во втором случае, т.е. при вскрытии пластов, определяющим фактором должна быть сохранность продуктивного пласта в состоянии, максимально приближенном к естественному.
Возникновение осложнений при бурении и заканчивании скважин в значительной мере зависит от изменения гидродинамических давлений. Механическая скорость проходки, состояние призабойной зоны, изменение (снижение) проницаемости продуктивного пласта, наконец, его возможный гидроразрыв с проникновением в него бурового раствора существенно определяются колебаниями гидродинамического давления, которое в отличие от гидростатического может изменяться в широких пределах.
Увеличение гидродинамического давления на стенку скважины и забой прослеживается сразу же после включения насосов, но еще до восстановления циркуляции бурового раствора его величина зависит от плавности запуска бурового насоса, предельного напряжения сдвига раствора, зазора между стенкой скважины и бурильными трубами, а также от глубины скважины.
Дополнительное давление Ар, которое определяется значением предельного напряжения сдвига бурового раствора до возобновления циркуляции, находят из выражения
∆ð = 4lτ0(D — d),
где / — глубина соприкосновения бурильного инструмента в скважине с буровым раствором; х0
— предельное напряжение сдвига бурового раствора (которое с известными допущениями можно заменить на статическое напряжение сдвига); D — диаметр скважины; d — наружный диаметр бурильных труб.
В глубоких скважинах Ар может достигать больших значений.
В соответствии с расчетами общее давление при запуске буровых насосов может быть существенным, поэтому в случае разбуривания продуктивного пласта, представленного непрочными породами, запускать насосы следует плавно, причем предельное напряжение сдвига должно быть минимально допустимым.
Достаточно глубоко изучено изменение гидродинамического давления на стенку скважины и забой при спускоподъемных операциях (А.М. Пир-вердян, Н.А. Гукасов, М.К. Сеид-Рза и др.). Оно определяется физико-механическими свойствами раствора, скоростью спуска и подъема бурильных и обсадных труб, величиной зазора кольцевого пространства, диаметрами труб и скважины, неровностями поверхностей и др.). С увеличением скорости спуска бурильного инструмента и с повышением физико-механической характеристики бурового раствора гидродинамическое давление повышается.
В зависимости от скорости движения бурильного инструмента меняет-
ся и скорость движения раствора. В период разгона (вниз) свечи возникает дополнительное гидростатическое давление.
При движении колонны труб вниз значения прироста давления достигают 50 % первоначального (для / = 1000 м, р = 1,25 г/см3, х0 = 30 Па, первоначальной скорости спуска 98 см/с).
При отрицательном ускорении давление на стенку скважины может снижаться до значения ниже гидростатического. Эти изменения гидродинамического давления создают знакопеременные нагрузки на пласты.
Естественно, при включении насосов или в случае спускоподъемных операций рост гидродинамического давления, причем значительный, отмечается в случае образования сальника на долоте. Возникают давления, достаточные для гидроразрыва продуктивного пласта. Проработка ствола (в том числе под спуск обсадной колонны) также может быть причиной повышения гидродинамической нагрузки на продуктивный пласт при промывке, особенно если в процессе последнего рейса скважина недостаточно очищалась от шлама или происходили осыпи или обвалы стенки скважины.
Некоторые исследователи склонны обращать внимание на повышение (и понижение) давления при восстановлении циркуляции бурового раствора в начале вращения инструмента.
Значение модуля градиента гидроразрыва в более общем случае зависит от типа горной породы, степени анизотропии, пластового (порового) давления, толщины покрывающих пластов, тектонического строения в пределах данной площади, наличия и качества фильтрационной корки и, как уже отмечалось, от физико-механических свойств жидкости.
Определять градиент гидроразрыва можно прямым и косвенными методами. Прямой метод основан на установлении давления, необходимого для разрыва породы, и давления распространения образовавшейся трещины. При это методе вводом бурового раствора повышают давление в скважине до предела, при котором произойдет разрыв пласта. К этому предельному значению прибавляют значение гидростатического давления. Сумма этих значений и представляет собой искомую величину.
К косвенным (расчетным) относятся метод Хубера и Уиллиса, метод Мэтьюза и Келли, метод Итона, метод Кристмана и др.
При заканчивании скважин гидравлический разрыв может произойти и часто происходит при пуске насосов, бурении, промывке, проработке, спуске бурильного инструмента, особенно когда плотность бурового раствора завышена.
Следствием гидроразрыва газового пласта (как и всякого иного) является падение гидростатического давления и поступление в скважину газа, часто с трагическим исходом.